首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016–2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs.
  相似文献   

2.
H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1‐7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains.  相似文献   

3.
Seventeen recombinant viruses were generated by a reverse genetic technique to elucidate the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) in chickens. The recombinant viruses generated possessed hemagglutinin (HA) and neuraminidase (NA) genes from an HPAIV. Other segments were combinations of the genes from an HPAIV and two low-pathogenic avian influenza viruses (LPAIVs) derived from chicken (LP) and wild bird (WB). Exchange of whole internal genes from an HPAIV with those of an LPAIV resulted in a significant extension of the survival time following intranasal infection of the chickens with the recombinants. Survival analysis demonstrated that the exchange of a gene segment affected survivability of the chickens with statistical significance. The analysis revealed three groups of recombinants with various gene constellations that depended upon the survivability of the infected chickens. Recombinants where the PA gene was exchanged from LP to WB in the LP gene background, LP (W/PA), did not kill any chickens. LP (W/PA) replicated less efficiently both in vitro and in vivo, suggesting that the intrinsic replication ability of LP (W/PA) affects pathogenicity; however, such a correlation was not seen for the other recombinants. Microarray analysis of the infected chicken lungs indicated that the expression of 7 genes, CD274, RNF19B, OASL, ZC3HAV1 [corrected] , PLA2G6, GCH1, and USP18, correlated with the survivability of the chickens infected (P < 0.01). Further analysis of the functions of these genes in chickens would aid in the understanding of host gene responses following fatal infections by HPAIVs.  相似文献   

4.
South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80-2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains.  相似文献   

5.
Prior to the emergence of the A/goose/Guangdong/1/1996 (Gs/GD) H5N1 influenza A virus, the long-held and well-supported paradigm was that highly pathogenic avian influenza (HPAI) outbreaks were restricted to poultry, the result of cross-species transmission of precursor viruses from wild aquatic birds that subsequently gained pathogenicity in domestic birds. Therefore, management agencies typically adopted a prevention, control, and eradication strategy that included strict biosecurity for domestic bird production, isolation of infected and exposed flocks, and prompt depopulation. In most cases, this strategy has proved sufficient for eradicating HPAI. Since 2002, this paradigm has been challenged with many detections of viral descendants of the Gs/GD lineage among wild birds, most of which have been associated with sporadic mortality events. Since the emergence and evolution of the genetically distinct clade 2.3.4.4 Gs/GD lineage HPAI viruses in approximately 2010, there have been further increases in the occurrence of HPAI in wild birds and geographic spread through migratory bird movement. A prominent example is the introduction of clade 2.3.4.4 Gs/GD HPAI viruses from East Asia to North America via migratory birds in autumn 2014 that ultimately led to the largest outbreak of HPAI in the history of the United States. Given the apparent maintenance of Gs/GD lineage HPAI viruses in a global avian reservoir; bidirectional virus exchange between wild and domestic birds facilitating the continued adaptation of Gs/GD HPAI viruses in wild bird hosts; the current frequency of HPAI outbreaks in wild birds globally, and particularly in Eurasia where Gs/GD HPAI viruses may now be enzootic; and ongoing dispersal of AI viruses from East Asia to North America via migratory birds, HPAI now represents an emerging disease threat to North American wildlife. This recent paradigm shift implies that management of HPAI in domestic birds alone may no longer be sufficient to eradicate HPAI viruses from a given country or region. Rather, agencies managing wild birds and their habitats may consider the development or adoption of mitigation strategies to minimize introductions to poultry, to reduce negative impacts on wild bird populations, and to diminish adverse effects to stakeholders using wildlife resources. The main objective of this review is, therefore, to provide information that will assist wildlife managers in developing mitigation strategies or approaches for dealing with outbreaks of Gs/GD HPAI in wild birds in the form of preparedness, surveillance, research, communications, and targeted management actions. Resultant outbreak response plans and actions may represent meaningful steps of wildlife managers toward the use of collaborative and multi-jurisdictional One Health approaches when it comes to the detection, investigation, and mitigation of emerging viruses at the human-domestic animal-wildlife interface.  相似文献   

6.
There has been multiple evidence that domestic poultry may act as a vessel for the generation of novel influenza A viruses. In this study, we have analyzed the evolution and pathogenicity of 4 H5N2 avian influenza viruses isolated from apparently healthy poultry from H5N1 virus endemic areas in China. Phylogenetic analysis revealed that two of these viruses, A/duck/Eastern China/1111/2011 (DK/EC/1111/11) and A/goose/Eastern China/1112/2011 (GS/EC/1112/11) were derived from reassortment events in which clade 2.3.4 highly pathogenic avian influenza (HPAI) H5N1 viruses acquired novel neuraminidase and nonstructural protein genes. Another two isolates, A/chicken/Hebei/1102/2010 (CK/HB/1102/10) and A/duck/Hebei/0908/2009 (DK/HB/0908/09), possess hemagglutinin (HA) gene belong to clade 7 H5 viruses and other genes from endemic H9N2 viruses, or from viruses of various subtypes of the natural gene pool. All of these H5N2 isolates bear characteristic sequences of HPAI virus at the cleavage site of HA, and animal experiments indicated that all of these viruses but DK/HB/0908/09 is highly pathogenic to chickens. In particular, DK/EC/1111/11 and GS/EC/1112/11 are also highly pathogenic to ducks and moderately pathogenic to mice. All of these 4 viruses were able to replicate in domestic ducks and mice without prior adaptation. The emergence of these novel H5N2 viruses adds more evidence for the active evolution of H5 viruses in Asia. The maintenance of the highly pathogenic phenotype of some of these viruses even after reassortment with a new NA subtypes, their ability to replicate and transmit in domestic poultry, and the pathogenicity in the mammalian mouse model, highlight the potential threat posed by these viruses to both veterinary and public health.  相似文献   

7.
The hemagglutinin (HA) and neuraminidase (NA) genes of H7 avian influenza virus (AIV) isolated between 1994 and 2002 from live-bird markets (LBMs) in the northeastern United States and from three outbreaks in commercial poultry have been characterized. Phylogenetic analysis of the HA and NA genes demonstrates that the isolates from commercial poultry were closely related to the viruses circulating in the LBMs. Also, since 1994, two distinguishing genetic features have appeared in this AIV lineage: a deletion of 17 amino acids in the NA protein stalk region and a deletion of 8 amino acids in the HA1 protein which is putatively in part of the receptor binding site. Furthermore, analysis of the HA cleavage site amino acid sequence, a marker for pathogenicity in chickens and turkeys, shows a progression toward a cleavage site sequence that fulfills the molecular criteria for highly pathogenic AIV.  相似文献   

8.
In the second half of 2005, a large-scale outbreak of influenza in poultry and wild birds was caused by a highly pathogenic H5N1 influenza virus in Russia. The level of pathogenicity is a polygenic trait, and most individual genes contribute to the influenza A virus pathogenicity in birds, animals, and humans. The full-length nucleotide sequences were determined for H5N1 strains isolated in the Kurgan region (Western Siberia). The structure of viral proteins was analyzed using the deduced amino acid sequences. The receptor-binding site of hemagglutinin (HA) in strains A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. The structure of the basic amino acid cluster located within the HA cleavage site was identical in all isolates: QGERRRKKR. According to the neuraminidase structure, all H5N1 isolates from the Kurgan region were assigned to the Z genotype. Amino acid residues typical for the avian influenza virus were revealed in 30 out of 32 positions of M1, M2, NP, PA, and PB2, determining the host range specificity. One of the strains contained Lys at position 627 of PB2. Isolates from the Kurgan region were shown to have a remantadine-sensitive genotype. Both strains contained Glu at position 92 of NS1, indicating that the virus is interferon-resistant. Phylogenetic analysis related the Kurgan isolates to subclade 2 of clade 2 of highly pathogenic H5N1 influenza viruses.  相似文献   

9.
Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.  相似文献   

10.
The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and wild birds has posed a potential threat to human public health. An influenza pandemic happens, when a new subtype that has not previously circulated in humans emerges. Almost all of the influenza pandemics in history have originated from avian influenza viruses (AIV). Birds are significant reservoirs of influenza viruses. In the present study, we performed a survey of avian influenza virus in ostriches and H5N1 virus (A/Ostrich/SuZhou/097/03, China097) was isolated. This H5N1 virus is highly pathogenic to both chickens and mice. It is also able to replicate in the lungs of, and to cause death in, BALB/c mice following intranasal administration. It forms plaques in chicken embryo fibroblast (CEF) cells in the absence of trypsin. The hemagglutinin (HA) gene of the virus is genetically similar to A/Goose/Guangdong/1/96(H5N1) and belongs to clade 0. The HA sequence contains multiple basic amino acids adjacent to the cleavage site, a motif associated with HPAI viruses. More importantly, the existence of H5N1 isolates in ostriches highlights the potential threat of wild bird infections to veterinary and public health.  相似文献   

11.
【背景】自2014年以来,H5N6禽流感病毒在我国家禽和活禽市场持续进化,成为人类和动物健康的重大威胁。【目的】对2017-2019年中国南方地区93株高致病性H5N6禽流感病毒的HA基因进行分子进化分析。【方法】接种9-11日龄鸡胚分离核酸检测阳性的H5N6标本,运用下一代测序平台对病毒分离物进行全基因组测序,从NCBI和GISAID数据库下载参考序列,利用BLAST、MEGA6.1及Clustal X等软件进行序列分析。【结果】2017-2019年,从189份江苏省H5亚型禽类/环境标本和1名H5N6患者咽拭子标本中共分离到43株病毒,完成了33株H5N6病毒的全基因组测序。下载网上同时期中国其他地区流行的H5N6毒株序列,对总计93株H5N6病毒的HA基因进行分子进化分析。93株H5N6病毒中有78株属于Clade 2.3.4.4h,9株病毒属于Clade 2.3.4.4e,4株H5N6病毒属于Clade 2.3.4.4b,1株属于Clade 2.3.4.4f,1株属于Clade 2.3.4.4g。所有93株病毒HA蛋白的裂解位点含有多个碱性氨基酸,表明它们都属于高致病性禽流感病毒。所有93株病毒HA蛋白的Q222和G224位氨基酸没有发生突变,保留了禽类受体α2-3半乳糖苷唾液酸(SAα2-3Gal)结合特性;158位点丧失糖基化,同时124位出现一个新的潜在糖基化位点。【结论】2017-2019年间中国南方地区H5N6病毒进化活跃,具有明显的基因多样性,需要加强对病毒分子进化的监测。  相似文献   

12.
Mase M  Kawaoka Y 《Uirusu》2005,55(2):231-237
Currently, H5N1 influenza viruses remain a serious public health concern in Asia and now in Europe. We showed that the H5N1 viruses associated with outbreaks of HPAI in chickens in Japan were genotypically closely related to an H5N1 virus isolated from a chicken in China in 2003 (genotype V), but were different from those prevalent in southeastern Asia in 2003-2004 (i.e., genotype Z). H5N1 viruses were also isolated from duck meat imported from China during this routine surveillance in May of 2003. We characterized these H5N1 isolates and found that poultry products contaminated with influenza viruses of high pathogenic potential to mammals are a threat to public health even in countries where the virus is not enzootic and represent a possible source of influenza outbreaks in poultry.  相似文献   

13.
14.
To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP (I)109(T)). By analyzing viruses constructed by the reverse-genetic method, we established that the NP (I)109(T) substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP (I)109(T) substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP (I)109(T) substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP (I)109(T) mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains.  相似文献   

15.

Background

The Influenza A pandemic H1N1 2009 (H1N1pdm) virus appeared in India in May 2009 and thereafter outbreaks with considerable morbidity and mortality have been reported from many parts of the country. Continuous monitoring of the genetic makeup of the virus is essential to understand its evolution within the country in relation to global diversification and to track the mutations that may affect the behavior of the virus.

Methods

H1N1pdm viruses were isolated from both recovered and fatal cases representing major cities and sequenced. Phylogenetic analyses of six concatenated whole genomes and the hemagglutinin (HA) gene of seven more isolates from May-September 2009 was performed with reference to 685 whole genomes of global isolates available as of November 24, 2009. Molecular characterization of all the 8 segments was carried out for known pathogenic markers.

Results

The first isolate of May 2009 belonged to clade 5. Although clade 7 was the dominant H1N1pdm lineage in India, both clades 6 and 7 were found to be co-circulating. The neuraminidase of all the Indian isolates possessed H275, the marker for sensitivity to the neuraminidase inhibitor Oseltamivir. Some of the mutations in HA are at or in the vicinity of antigenic sites and may therefore be of possible antigenic significance. Among these a D222G mutation in the HA receptor binding domain was found in two of the eight Indian isolates obtained from fatal cases.

Conclusions

The majority of the 13 Indian isolates grouped in the globally most widely circulating H1N1pdm clade 7. Further, correlations of the mutations specific to clade 7 Indian isolates to viral fitness and adaptability in the country remains to be understood. The D222G mutation in HA from isolates of fatal cases needs to be studied for pathogenicity.  相似文献   

16.
Dong G  Xu C  Wang C  Wu B  Luo J  Zhang H  Nolte DL  Deliberto TJ  Duan M  Ji G  He H 《PloS one》2011,6(9):e25808
H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94) HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98) PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1) PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46) discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.  相似文献   

17.
Widespread infection of highly pathogenic avian influenza A H5N1 was reported from backyard and commercial poultry in West Bengal (WB), an eastern state of India in early 2008. Infection gradually spread to Tripura, Assam and Sikkim, the northeastern states, with 70 outbreaks reported between January 2008 and May 2009. Whole genome sequence analysis of three isolates from WB, one isolate from Tripura along with the analysis of hemagglutinin (HA) and neuraminidase (NA) genes of 17 other isolates was performed during this study. In the HA gene phylogenetic tree, all the 2008-09 Indian isolates belonged to EMA3 sublineage of clade 2.2. The closest phylogenetic relationship was found to be with the 2007-09 isolates from Bangladesh and not with the earlier 2006 and 2007 Indian isolates implying a third introduction into the country. The receptor-binding pocket of HA1 of two isolates from WB showed S221P mutation, one of the markers predicted to be associated with human receptor specificity. Two substitutions E119A (2 isolates of WB) and N294S (2 other isolates of WB) known to confer resistance to NA inhibitors were observed in the active site of neuraminidase. Several additional mutations were observed within the 2008-09 Indian isolates indicating genetic diversification. Overall, the study is indicative of a possible endemicity in the eastern and northeastern parts of the country, demanding active surveillance specifically in view of the critical mutations that have been observed in the influenza A H5N1 viruses.  相似文献   

18.
In April 1983, an influenza virus of low virulence appeared in chickens in Pennsylvania. Subsequently, in October 1983, the virus became virulent and caused high mortality in poultry. The causative agent has been identified as an influenza virus of the H5N2 serotype. The hemagglutinin is antigenically closely related to tern/South Africa/61 (H5N3) and the neuraminidase is similar to that from human H2N2 strains (e.g., A/Japan/305/57) and from some avian influenza virus strains (e.g., A/turkey/Mass/66 [H6N2]). Comparison of the genome RNAs of chicken/Penn with other influenza virus isolates by RNA-RNA hybridization indicated that all of the genes of this virus were closely related to those of various other influenza virus isolates from wild birds. Chickens infected with the virulent strain shed high concentrations of virus in their feces (10(7) 50% egg infective dose per g), and the virus was isolated from the albumin and yolk of eggs layed just before death. Virus was also isolated from house flies in chicken houses. Serological and virological studies showed that humans are not susceptible to infection with the virus, but can serve as short-term mechanical carriers. Analysis of the RNA of the viruses isolated in April and October by gel migration and RNA-RNA hybridization suggested that these strains were very closely related. Oligonucleotide mapping of the individual genes of virulent and avirulent strains showed a limited number of changes in the genome RNAs, but no consistent differences between the virulent and avirulent strains that could be correlated with pathogenicity were found. Polyacrylamide gel analysis of the early (avirulent) isolates demonstrated the presence of low-molecular-weight RNA bands which is indicative of defective-interfering particles. These RNAs were not present in the virulent isolates. Experimental infection of chickens with mixtures of the avirulent and virulent strains demonstrated that the avirulent virus interferes with the pathogenicity of the virulent virus. The results suggest that the original avirulent virus was probably derived from influenza viruses from wild birds and that the virulent strain was derived from the avirulent strain by selective adaptation rather than by recombination or the introduction of a new virus into the population. This adaptation may have involved the loss of defective RNAs, as well as mutations, and thus provides a possible model for a role of defective-interfering particles in nature.  相似文献   

19.
An H7N3 avian influenza virus (AIV) was isolated from a Cinnamon Teal (Anas cyanoptera) (A/CinnamonTeal/Bolivia/4537/01) during a survey of wild waterfowl in Bolivia in 2001. The NA and M genes had the greatest identity with North American wild bird isolates, the NS was most closely related to an equine virus, and the remaining genes were most closely related to isolates from an outbreak of H7N3 in commercial poultry in Chile in 2002. The HA protein cleavage site and the results of pathogenesis studies in chickens were consistent with a low-pathogenicity virus, and the infective dose was 10(5) times higher for chickens than turkeys.  相似文献   

20.
Isolation and characterization of the influenza virus A/H5N1 strains, isolated from chicken in the Yandovka village (Tula Region) and from wild swan near the orifice of the Volga River that died during an outbreak of avian flu in autumn 2005, were carried out. Genetic and phylogenetic analyses were performed. The goals of the analysis were to determine possible geographical origin of the strain, genetic similarity of isolated strains to earlier sequenced isolates, epidemic potential, existence of pathogenicity markers, and resistance to antiviral drugs. It was shown that the isolated influenza virus belonged to highly pathogenic variants of China origin by a reassortment of viruses genotypes Z and V circulated in poultry and wild birds. A number of molecular markers of pathogenicity to gallinaceous birds and mammals were found out. Mutations in the hemagglutinin gene promoting potentially high rate of replication in humans as well as mutations causing the resistance to amantadine/rimantadine were not found. The strain isolated from wild swan had the mutation causing resistance to tamiflu/ozeltamivir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号