首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.  相似文献   

3.
4.
We evaluated the adoptive transfer of DCs on Leishmania (L.) mexicana-infected neonatal BALB/c mice. DCs were isolated and purified from the spleens of the following donor groups: a) Adult BALB/c mice infected during adulthood with L. (L) mexicana; b) Adult BALB/c mice infected during neonatal life; c) Healthy neonatal BALB/c mice; d) Healthy adult BALB/c mice. A neonatal model of infection, generated after inoculation with 5 × 105 promastigotes of L. (L) mexicana, was used as the infection control group. Sixteen hours after intraperitoneal transfer of DCs (1 × 103, 1 × 105, or 1 × 106 cells/ml), neonatal recipient BALB/c mice were infected. The adoptive transfer of DCs diminished disease progression in neonatal mice. This reduction depends on the quantity and provenance of transferred DCs, since the effect was more evident with high numbers of DCs from adult mice infected during adulthood and healthy neonatal mice. Protection was significantly reduced in animals receiving DCs from healthy adult mice but it was absent in mice receiving DCs from adult mice infected during neonatal life. These results suggest that genetic susceptibility to Leishmania infection can be modified during neonatal life, and that the period of life when antigens are encountered is crucial in influencing the capacity of DCs to induce resistance or tolerance.  相似文献   

5.
Macrophages (M?) and dendritic cells (DC) are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a method employed by multiple pathogens to ensure their survival in the infected cell. Leishmania has been shown to protect M? and neutrophils from both natural and induced apoptosis. As shown in this study, apoptosis in monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by coincubation with L. mexicana, as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low molecular weight DNA fragments, and annexin V binding to phosphatidylserine. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in moDC. The capacity of L. mexicana to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.  相似文献   

6.
The polyanionic compound poly-d-glutamic acid was found to inhibit significantly the fusion of secondary lysosomes to phagosomes containing Leishmania mexicana mexicana amastigotes for at least 96 hr. This process was viewed both by dark-field vital fluorescence microscopy and transmission electron microscopy. In poly-d-glutamic acid-treated macrophages parasites multiplied at a significantly greater rate than in untreated macrophages. Conversely, the secondary amine chloroquine caused a marked reduction in parasite growth. When L. m. mexicana promastigotes were substituted for amastigotes these results were strikingly more pronounced.  相似文献   

7.
8.
Two clones of Leishmania mexicana resistant to 5 μM (LmR5CL2) and 20 μ M (LmR20CLl) pentamidine, derived from a parental wild-type clone (LmWTCL3) were selected in vitro using a continuons drug pressure protocol. Both resistant clones expressed a cross-resistance to diminazene aceturate. No differences in their in-vitro infectivity for mouse peritoneal macrophages between wild-type and pentamidine-resistant promastigotes were observed. During these experiments, promastigotes of LmR20CL1 derived from intramacrophagic amastigote forms reverted to the pentamidine-sensitive phenotype, unlike the lower resistant ones. In the same way, when a complete developmental sequence of L. mexicana was achieved in axenic cultures, LmR20CL1 promastigotes derived from axenically growing amastigotes expressed an IC50 value close to the wild-type one, whereas resulting LmR5CL2 promastigotes remained pentamidine resistant. This modulation of the chemoresistance during the developmental life cycle could be significant in the transmission of drug-resistant strains by Phlebotominae as well as in basic research to follow drug resistance during the in-vitro and in-vivo life cycle of Leishmania.  相似文献   

9.
Unstimulated mouse peritoneal exudate cells were cultured on coverslips in Medium 199 containing 10% (v/v) calf serum. Cytochalasin B dissolved in dimethyl sulphoxide (DMSO) and diluted in Medium 199 was added to cultures to give final concentrations of 1, 5 and 10 μg/ml. Equal numbers of Leishmania mexicana promastigotes, Trypanosoma cruzi epimastigotes and sheep red cells were added to 24 hr cultures incubated at 37 C. The macrophage monolayers were fixed and stained at various time intervals. L. mexicana promastigotes and sheep red blood cells were found to attach to macrophages in the presence of the drug but did not enter the cells. When the medium containing the Cytochalasin was replaced with normal medium phagocytosis of the adherent parasites and red cells followed rapidly. T. cruzi epimastigotes were found inside macrophages in both drug-treated and drug-free cultures although the number found to be intracellular in the latter was significantly greater. This study suggests that L. mexicana promastigotes enter macrophages by being phagocytosed, whereas T. cruzi epimastigotes can actively penetrate these cells.  相似文献   

10.
ABSTRACT. The biochemistry and immunology of Leishmania promastigotes has been extensively studied; this is due primarily to the facility with which this stage, in contrast to the amastigotes stage, can be maintained in axenic culture. Several attempts to axenically culture lines of Leishmania amastigotes have been reported in the literature. This paper summarizes methods of adaptation (low pH, elevated temperature and culture medium) and characterization of several axenic lines of Leishmania amastigotes. Based on morphological, biological, immunological and biochemical evidence, these organisms appear to resemble amastigotes from infected macrophages or tissue. The axenically cultured amastigotes appear to be distinct from shocked (heat, serum deprivation, stressed) Leishmania promastigotes in the plethora of proteins synthesized, growth (multiplication) in culture, and developmental regulation observed. These data suggest that Leishmania organisms have a significant developmental response to certain signals (pH, temperature) mimicking their in vivo macrophage milieu. The response to other environmental parameters characteristic of the host-macrophage remain to be determined. These axenically cultured amastigotes should be of interest for further immunological, biochemical and developmental investigations of the disease-maintaining stage of this parasite.  相似文献   

11.
12.
Leishmaniasis is a vector‐borne infectious disease with a wide range of pathologies depending on the species of Leishmania. Leishmania parasites are transmitted by the sand fly vector as promastigotes; within the mammalian host, Leishmania parasites differentiate into amastigotes and replicate in macrophages. The A2 protein from Leishmania donovani is expressed predominantly in amastigotes and therefore likely plays a role in survival in the mammalian host. In the present study, we have determined that the A2 protein colocalized with the Leishmania endoplasmic reticulum binding protein, BiP, was induced by stress and complexed with BiP following heat shock. The A2 gene in Leishmania major is a non‐expressed pseudogene, and we present evidence that ectopic expression of a transfected A2 gene in L. major enhanced its viability following heat shock. A2 may therefore play a role in protecting L. donovani from stress associated with infection in visceral organs, including the fever typically associated with visceral leishmaniasis. Interestingly, when comparing A2 protein localization, we also observed that the Leishmania secreted acid phosphatase SAcP protein was transported out of the parasite‐containing phagolysosome and was located throughout the macrophage cytoplasm in vesicles, providing the first example of a secreted Leishmania‐derived protein exiting the parasite‐containing phagolysosome.  相似文献   

13.
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C‐type lectin dendritic cell‐specific intracellular cell adhesion molecule‐3 (ICAM‐3)‐grabbing non‐integrin (DC‐SIGN), because a detailed characterization at the structural level is lacking. DC‐SIGN recognizes specific Candida‐associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan‐branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope‐based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC‐SIGN. We demonstrate that slight differences in the N‐mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC‐SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kBT. The single‐bond affinity of tetrameric DC‐SIGN for wild‐type C. albicans is ~10.7 kBT and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate–protein interactions described in the literature. In conclusion, this study shows that DC‐SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC‐SIGN and its pathogenic ligands will lead to a better understanding of how fungal‐associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti‐fungal drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite''s single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.  相似文献   

15.
ABSTRACT. Leishmania parasites, which afflict 12 million people in 88 countries, exist as promastigotes transmitted by insect vectors and as amastigotes residing in mammalian macrophages. Promastigote cells arranged in rosettes have also been described but universally disregarded as a distinct stage in the life cycle. We present evidence that only rosettes of Leishmania major promastigotes express cell surface poly‐α2,8 N‐acetyl neuraminic acid (PSA) and PSA containing de‐N‐acetyl neuraminic acid (NeuPSA). Expression of rosette‐specific PSA antigens was mosaic, with individual promastigotes expressing PSA, NeuPSA or both. A 50 kDa protein was detected by Western blot analysis of a detergent‐insoluble cell fraction with both PSA and NeuPSA‐reactive antibodies. Frequencies of rosette formation as well as cell surface PSA/NeuPSA expression were temperature dependent. Rosettes also engaged in an unusual swarming behavior, congregating into extended clusters. Distinct structures resembling cellular fusion bodies were formed in and released from rosettes. The results indicate that rosettes are an unrecognized stage in the life cycle of Leishmania. We hypothesize that rosettes initiate mating in Leishmania during which PSA/NeuPSA expression plays an important role. Recognizing rosettes as a distinct form of the Leishmania life cycle opens new possibilities for treatment or prevention of disease and, possibly, in vitro genetic recombination without passage of cells through insect vectors.  相似文献   

16.
Antiparasitic effect of a lectin isolated from Synadenium carinatum latex (ScLL) was evaluated against Leishmania (Leishmania) amazonensis promastigotes/amastigotes. Pretreatment of murine inflammatory peritoneal macrophages with ScLL reduced by 65.5% the association index of macrophages and L. (L) amazonensis promastigotes. Expression of cytokines (IL-12, IL-1 and TNF-α) was detected in infected macrophages pretreated with ScLL (10 μg/mL). ScLL also reduced the growth of L. (L) amazonensis amastigote intracellular forms, showing no in vitro cytotoxic effects in mammalian host cells. ScLL treatment in infected murine inflammatory peritoneal macrophages did not induce nitric oxide production, suggesting that a nitric oxide independent pathway is activated to decrease the number of intracellular Leishmania.  相似文献   

17.
18.
Leishmania mexicana has a large family of cyclin‐dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2‐related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co‐expression of a CRK3 transgene during rapamycin‐induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3T178E mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.  相似文献   

19.
Leishmaniasis is caused by the dimorphic protozoan parasite Leishmania. Differentiation of the insect form, promastigotes, to the vertebrate form, amastigotes, and survival inside the vertebrate host accompanies a drastic metabolic shift. We describe a gene first identified in amastigotes that is essential for survival inside the host. Gene expression analysis identified a 27 kDa protein‐encoding gene (Ldp27) that was more abundantly expressed in amastigotes and metacyclic promastigotes than in procyclic promastigotes. Immunofluorescence and biochemical analysis revealed that Ldp27 is a mitochondrial membrane protein. Co‐immunoprecipitation using antibodies to the cytochrome c oxidase (COX) complex, present in the inner mitochondrial membrane, placed the p27 protein in the COX complex. Ldp27 gene‐deleted parasites (Ldp27?/?) showed significantly less COX activity and ATP synthesis than wild type in intracellular amastigotes. Moreover, the Ldp27?/? parasites were less virulent both in human macrophages and in BALB/c mice. These results demonstrate that Ldp27 is an important component of an active COX complex enhancing oxidative phosphorylation specifically in infectious metacyclics and amastigotes and promoting parasite survival in the host. Thus, Ldp27 can be explored as a potential drug target and parasites devoid of the p27 gene could be considered as a live attenuated vaccine candidate against visceral leishmaniasis.  相似文献   

20.

Background

Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development.

Methodology/Principal Findings

Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function.

Conclusions/Significance

The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号