首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

Background and Aims

Delayed selfing is the predominant mode of autonomous self-pollination in flowering plants. However, few delayed selfing mechanisms have been documented. This research aims to explore a new delayed selfing mechanism induced by stigmatic fluid in Roscoea debilis, a small perennial ginger.

Methods

Floral biology and flower visitors were surveyed. The capacity of autonomous selfing was evaluated by pollinator exclusion. The timing of autonomous selfing was estimated by emasculation at different flowering stages. The number of seeds produced from insect-pollination was assessed by emasculation and exposure to pollinators in the natural population. The breeding system was also tested by pollination manipulations.

Key Results

Autonomous self-pollination occurred after flowers wilted. The stigmatic fluid formed a globule on the stigma on the third day of flowering. The enlarged globule seeped into the nearby pollen grains on the fourth flowering day, thus inducing pollen germination. Pollen tubes then elongated and penetrated the stigma. Hand-selfed flowers produced as many seeds as hand-crossed flowers. There was no significant difference in seed production between pollinator-excluded flowers and hand-selfed flowers. When emasculated flowers were exposed to pollinators, they produced significantly fewer seeds than intact flowers. Visits by effective pollinators were rare.

Conclusions

This study describes a new form of delayed autonomous self-pollination. As the predominant mechanism of sexual reproduction in R. debilis, delayed self-pollination ensures reproduction when pollinators are scarce.  相似文献   

2.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

3.
Outbreeding confers an evolutionary advantage, and flowering plants have evolved a variety of contrivances for its maximization. However, neither fruit set nor seed set is realized to its fullest potential for a variety of reasons. The causes of low flower to fruit and seed to ovule ratios were investigated in naturally occurring bael trees (Aegle marmelos) at two sites for three seasons. The study established that the mass effect of synchronized flowering attracted a variety of insect pollinators to the generalist flowers; Apis dorsata was the most efficient pollinator. The seed to ovule ratio was low despite high natural pollination efficiency (c. 2400 pollen per stigma). Although pollination‐induced structural and histochemical changes in the style allowed many (9.5 ± 2.1) pollen tubes to grow, only cross‐pollen tubes could grow through the style. Gametophytic self‐incompatibility, manifested in the stylar zone, resulted in a significantly slower growth rate of self‐pollen tubes. The occurrence of obligate self‐incompatibility, coupled with increased self‐pollen deposition (geitonogamy), caused a significant number of flowers to abort. Fruit retention in the trees declined from 40% to 12% as a result of abortion of fruits at different stages of development. The number of mature fruits on a tree was negatively correlated (r = ?0.82) with their size. It is inferred that low natural fecundity in A. marmelos is primarily a result of obligate self‐incompatibility and strong post‐fertilization maternal regulation of allocation of resources to the developing fruits. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 572–585.  相似文献   

4.
Cross‐ and self‐fertilization in angiosperms are regulated by several factors, and a knowledge of the mechanism and time of spontaneous self‐pollination offers opportunities for a better understanding of the evolution of mating systems and floral traits. The floral biology of five species of Gentianaceae found in high‐altitude neotropical grassland is presented, with emphasis on the mechanisms that promote spontaneous self‐pollination. A presumed floral Batesian mimicry system is suggested between the rare and rewardless Zygostigma australe and Calydorea campestris, a species of Iridaceae with pollen‐flowers, pollinated by syrphids and bees. The floral morphology of the other four gentian species points to three different pollination syndromes: melittophily, phalaenophily and ornithophily. However, with the exception of the nocturnal Helia oblongifolia, flowers are nectarless and appear to exhibit non‐model deceptive mechanisms, providing similar floral cues to some sympatric rewarding species with the same syndrome. The similar mechanism of spontaneous self‐pollination in Calolisianthus pedunculatus, Calolisianthus pendulus and H. oblongifolia (Helieae) is based on the stigmatic movements towards the anthers. Selfing is promoted by movements of the style/stigma and of the corolla in Deianira nervosa and Z. australe (Chironieae), respectively. The movements of stamens, style and stigma during anthesis seem to be the most common method of spontaneous self‐pollination in angiosperms. It is suggested that the evolution of delayed spontaneous self‐pollination would be more expected in those taxa with dichogamous flowers associated with herkogamy. Such a characteristic is frequent in long‐lived flowers of certain groups of Asteridae, which comprise most documented cases of autonomous selfing. Thus, the presence of dichogamy associated with herkogamy (which supposedly evolved as a result of selection to promote both separation of male and female functions and the efficient transfer of cross pollen) may be the first step in the adaptive evolution of delayed selfing to provide reproductive assurance. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 357–368.  相似文献   

5.
  • Studies of floral polymorphisms have focused on heterostyly, while stigma‐height dimorphism has received considerably less attention. Few studies have examined the reproductive biology of species with stigma‐height dimorphism to understand how factors influencing mate availability and pollen transfer are related to morph ratios in populations.
  • Floral morphological traits, especially herkogamy and reciprocity, pollinator visitation, breeding system and spatiotemporal mate availability, are known to affect inter‐morph pollination and morph ratios in species with stigma‐height dimorphism. In this study, we investigated the presence of stigma‐height dimorphism and estimated morph ratios in four naturally occurring populations of Jasminum malabaricum. We quantified morph‐ and population‐specific differences in the abovementioned factors in these populations to understand the observed morph ratios.
  • The positions of anthers and stigmas were characteristic of stigma‐height dimorphism, the first report of this polymorphism in the genus. All study populations were isoplethic, implying equal fitness of both morphs. Herkogamy was higher in the short‐styled morph, while reciprocity was higher between the long‐styled stigma and short‐styled anthers. Long‐ and short‐tongued pollinators were common floral visitors, and we observed no differences between morphs in spatiotemporal mate availability or pollinator visitation. Neither morph exhibited self‐ or heteromorphic incompatibility.
  • The short‐styled stigma had lower reciprocity but likely receives sufficient inter‐morph pollen from long‐tongued pollinators, and also by avoiding self‐pollination due to higher herkogamy. These results highlight the importance of sufficient effective pollinators and floral morphological features, particularly herkogamy, in maintaining isoplethy in species with stigma‐height dimorphism.
  相似文献   

6.
  • Self‐pollination by geitonogamy is likely in self‐compatible plants that simultaneously expose a large number of flowers to pollinators. However, progeny of these plants is often highly allogamous. Although mechanisms to increase cross‐pollination have been identified and studied, their relative importance has rarely been addressed simultaneously in plant populations.
  • We used Rosmarinus officinalis to explore factors that influence the probability of self‐fertilisation due to geitonogamy or that purge its consequences, focusing on their effects on seed germination and allogamy rate. We experimentally tested the effect of geitonogamy on the proportion of filled seeds and how it influences germination rate. During two field seasons, we studied how life history and flowering traits of individuals influence seed germination and allogamy rates of their progeny in wild populations at the extremes of the altitudinal range. The traits considered were plant size, population density, duration of the flowering season, number of open flowers, flowering synchrony among individuals within populations and proportion of male‐sterile flowers.
  • We found that most seeds obtained experimentally from self‐pollination were apparently healthy but empty, and that the proportion of filled seeds drove the differences in germination rate between self‐ and cross‐pollination experiments. Plants from wild populations consistently had low germination rate and high rate of allogamy, as determined with microsatellites. Germination rate related positively to the length of the flowering season, flowering synchrony and the ratio of male‐sterile flowers, whereas the rate of allogamous seedlings was positively related only to the ratio of male‐sterile flowers.
  • Rosemary plants purge most of the inbreeding caused by its pollination system by aborting the seeds. This study showed that the rates of seed germination and allogamy of the seedlings depend on a complex combination of factors that vary in space and time. Male sterility of flowers, length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross‐pollination, therefore increasing germination and allogamy rates. Flowering traits appear to be highly plastic and respond to local and seasonal conditions.
  相似文献   

7.
Capacity for autonomous self‐fertilization provides reproductive assurance, has evolved repeatedly in the plant kingdom, and typically involves several changes in flower morphology and development (the selfing syndrome). Yet, the relative importance of different traits and trait combinations for efficient selfing and reproductive success in pollinator‐poor environments is poorly known. In a series of experiments, we tested the importance of anther–stigma distance and the less studied trait anther orientation for efficiency of selfing in the perennial herb Arabis alpina. Variation in flower morphology among eight self‐compatible European populations was correlated with efficiency of self‐pollination and with pollen limitation in a common‐garden experiment. To examine whether anther–stigma distance and anther orientation are subject to directional and/or correlational selection, and whether this is because these traits affect pollination success, we planted a segregating F2 population at two native field sites. Selection strongly favored a combination of introrse anthers and reduced anther–stigma distance at a site where pollinator activity was low, and supplemental hand‐pollination demonstrated that this was largely because of their effect on securing self‐pollination. The results suggest that concurrent shifts in more than one trait can be crucial for the evolution of efficient self‐pollination and reproductive assurance in pollinator‐poor habitats.  相似文献   

8.
Delayed autonomous self-pollination allows outcrossing to occur while also ensuring that seeds are produced in the absence of pollen vectors. We investigated variation in the efficacy of this pollination mechanism in populations of Hibiscus laevis. Recurvature of stylar branches occurred after 1 d of anthesis, and in plants from Ohio, Illinois, Arkansas, and Oklahoma this behavior resulted in autonomous selfing (surprisingly, stylar movement was facultative in that it did not take place when the stigmas were already pollinated). In contrast to these more northern populations, the distance between anthers and stigmas was too great to allow autonomous selfing in plants from Texas, Mississippi, and Louisiana. Greenhouse studies of plants from Ohio demonstrated that autonomous selfing resulted in an average of 29.5 seeds per flower, as compared to 59.9 seeds per flower from hand-pollination of stigmas with self pollen. In an assessment of the possible significance of this selfing mode, emasculated flowers did not set significantly fewer seeds in a natural stand in Ohio, suggesting that few seeds resulted from autonomous selfing at that site. Modest inbreeding depression was detected at this population. Our results suggest that delayed autonomous selfing is more common in northern populations, where it may facilitate population establishment and persistence at times when pollinators are scarce.  相似文献   

9.
  • Flowers, the reproductive organs of angiosperms, show a high degree of diversity in morphological structure and flowering habit to ensure pollination and fertilization of the plants. Effect of flower movement on pollination and fertilization was investigated in Ipomoea purpurea (Convolvulaceae) in this study.
  • Fluorescence microscopy was used to observe the germination of pollen grains at different temperatures.
  • From 04:00 to 06:00 h, the stigma was taller than the filaments, so that self‐pollination could not occur, and cross‐pollination was carried out by insects. Pollen grains germinated rapidly after falling on the stigma; the pollen tube reached the ovule to complete fertilization after 2–3 h. From 07:00 to 09:00 h, filaments of two stamens grew rapidly and reached the same height as the stigma, thus allowing self‐crossing. But at this time, the ambient temperature was already high and was not conducive to the germination of pollen grains. The corolla closed, forming an inverted bell shape, where the inner microenvironment ensured completion of pollen germination and fertilization.
  • Preferential cross‐pollination and delayed self‐crossing of I. purpurea provided a doubly guaranteed mechanism for pollination and fertilization, facilitating its adaptation to a high temperature climate.
  相似文献   

10.
  • The interaction of plants with pollinators can be a determinant of their reproductive fitness. However, information about the pollination biology of carnivorous plants is scarce. To increase knowledge of reproductive ecology of carnivorous plants we focused on Pinguicula moranensis. Specifically, based on the presence of large, zygomorphic and spurred flowers, we predicted higher reproductive fitness in cross‐pollinated than in self‐pollinated flowers.
  • Within a plot of 51 m2 we characterised the reproductive phenology, including flower lifespan and stigmatic receptivity. We identified pollinators and their movement patterns within the plot. Breeding system was experimentally evaluated using hand‐pollination (i.e. autonomous, self‐ and cross‐pollination).
  • Flowers of P. moranensis were visited by long‐tongued pollinators, mainly members of the Lepidoptera. Hand‐pollination experiments confirmed our prediction and suggest that flower traits might favour cross‐pollination.
  • We mainly discuss the implications of the patchy distribution of plants and behaviour of pollinators on gene movement in this plant species, as pollination between genetically related individuals could be occurring.
  相似文献   

11.
  • Individuals of Aechmea bracteata show inflorescences with red scape bracts and odourless, yellow, tubular diurnal flowers, with closely arranged sexual organs, producing a large amount of fruits.
  • In order to investigate the reproductive system of this species, a suite of characters was assessed: phenology, floral morphology and biology, nectar production dynamics, and fruit and seed production and germination, as a result of controlled pollination crosses. The study was conducted during two flowering seasons in wild populations in Yucatán, Mexico.
  • Results suggest an annual flowering pattern with one flowering peak; flowers were diurnal, showing partial dichogamy (protandry)‐herkogamy, anthers and stigma become mature before floral aperture, which could lead to self‐pollination, nectar is produced during anthesis, varying in volume and total sugar concentration during the day; fruits and seeds were produced in all experimental crosses (cross‐pollination, obligated cross‐pollination, assisted and unassisted selfing, geitonogamy and apomixis), as well as high percentage seed germination.
  • Several species of Aechmea are reportedly self‐compatible and autogamous, as suggested by results of selfing and non‐assisted selfing crosses, but these results are negated by the presence of apomixis, indicating that the species is apomictic. This is the first report of this breeding system for subgenus Aechmea and the sixth for Bromeliaceae. Polyembryony is here suggested for the first time in this genus and family based on the fact that more seeds were recorded that expected based on ovule numbers. Finally, when performing experimental crosses, estimating reproductive success based on number of seeds is a better approach than number of fruits, due to the effect of pseudogamy.
  相似文献   

12.
Attraction of pollinators and successful pollen transfer represent the primary targets of selection during flower evolution, leading to repeated evolutionary shifts between pollinators and consequently to the diversification of floral forms. However, most studies in floral evolution focus on the characteristics of flowers with straight corolla tube. Here, we report on an unusual form of sigmoid corolla combined with protandry and herkogamy in a Chinese species of Gesneriaceae, Oreocharis pumila (formerly Opithandra pumila). Contrary to species with sigmoid corollas studied previously, the base of the corolla tube of this species is inclined at an oblique angle downwards before the tube bends forward, and the stigma and anthers are included in the upper part of the corolla tube. The plants were found to be self‐compatible but incapable of autonomous selfing. Successful pollination was found to depend fully on the presence of insect pollinators (Nomia sp.) and pollen grains are the greatest reward for the visitors. Different from the other sigmoid flowers, the sigmoid corolla of O. pumila was not found to favor insect pollinators with long flexible proboscises. A mechanical fit between floral morphology and pollinator was found, in which only small insect visitors with specialized visiting behavior are legitimate pollinators. The protandry combined with herkogamy in the sigmoid corolla tube strongly ensures pollination efficiencies. Oreocharis pumila is the only species with sigmoid corolla in the genus Oreocharis. We hypothesize that such a corolla has arisen through selection due to inadequate pollination in early spring in the mountainous habitat that O. pumila occupies.  相似文献   

13.
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization.  相似文献   

14.
  • Mexico has one of the highest diversities of barrel cacti species worldwide; however, all are threatened and require conservation policies. Information on their reproductive biology is crucial, but few studies are available. Ferocactus recurvus subsp. recurvus is a barrel cactus endemic to the Tehuacán‐Cuicatlán Valley. Our research aimed to characterise its floral and pollination biology. We hypothesised bee pollination, as suggested by its floral morphology and behaviour, and self‐incompatibility, like most barrel cacti studied.
  • Three study sites were selected in the semiarid Zapotitlán Valley, Mexico. We examined 190 flowers from 180 plants to determine: morphometry and behaviour of flowers, flower visitors and probable pollinators, and breeding system.
  • Flowers showed diurnal anthesis, lasting 2–5 days, the stigma being receptive on day 2 or 3 after the start of anthesis. Flowers produced scarce/no nectar and main visitors were bees (Apidae), followed by flies (Muscidae), ants (Formicidae), thrips (Thripidae) and hummingbirds (Throchilidae); however, only native bees and occasionally wasps contacted the stigma and anthers. Pollination experiments revealed that this species is self‐incompatible and xenogamous. In natural conditions, fruit set was 60% and cross‐pollination fruit set was 100%. Percentage seed germination resulting from cross‐pollination was higher than in the control treatment.
  • Our results provide ecological information for conservation programmes to ensure a high probability of breeding and seed production in natural populations of F. recurvus.
  相似文献   

15.
  • Heteranthery, the presence of feeding and pollinating anthers in the same flower, seems to mediate the evolutionary dilemma for plants to protect their gametes and yet provide food for pollinators. This study aims to elucidate the role of heteranthery in the buzz‐pollinated Senna reniformis.
  • The fecundity of pollen from long‐, medium‐ and short‐sized anthers was determined by hand cross‐pollination experiments, and the quantity, size, ornamentation and viability of pollen of different anthers were compared. Rates of flower rejection by bees were measured in anther removal experiments to assess the preferences of flower visitors for feeding or pollinating anthers.
  • Large bees, which were the effective pollinators of self‐incompatible S. reniformis, avoided flowers without short feeding anthers, but not those without medium or long anthers. Illegitimate small and medium‐sized bees were unresponsive to anther exclusion experiments. Long anthers deposited pollen on the back and short anthers on the venter of large bees. Pollen from long anthers had higher in vitro viability and higher fruit and seed set after cross‐pollination than pollen from other sized anthers.
  • Short anthers produce feeding pollen to effective pollinators and long anthers are related to pollination of S. reniformis. Bee behaviour and size was found to directly influence the role of anthers in the ‘division of labour’. Only large bee pollinators that carry the pollinating pollen from long anthers in ‘safe sites’ associated short anthers with the presence of food. In the absence of these larger bee pollinators, the role of heteranthery in S. reniformis would be strongly compromised and its function would be lost.
  相似文献   

16.
Exclusion experiments were used to assess the effect of different pollinator groups on outcrossing and seed production in Metrosideros excelsa. The main study site was Little Barrier Island, New Zealand where indigenous bird and native solitary bees are the main flower visitors. Our results showed that native birds were more important pollinators of M. excelsa than native bees. Seed production was much higher in open pollination than in two exclusion experiments where either birds were excluded and native bees only had access to flowers, or where all pollinators had been excluded. The number of fertile seeds per capsule was 45% higher after open pollination than in treatments with bee visitation only and 28% higher than in treatments where all flower visitors were excluded. Estimated outcrossing rates were significantly higher (tm = 0.71) for open pollination in the upper canopy (>4 m above‐ground level) where bird visitation is presumed to be more frequent than for a treatment with native bee access only (tm = 0.40). Our results also suggest that a large proportion of seeds (66%) arise from autonomous self‐pollination when all pollinators are excluded. In four trees of a modified mainland population with predominantly introduced birds and a mixture of introduced and native bees there was no decrease in seed production for the treatment allowing bee access only, indicating that – in contrast to native bees – honeybees may be more efficient pollinators of M. excelsa. Observation of the foraging behaviour of both groups of bees showed that native bees contact the stigma of flowers less frequently than honeybees. This is likely to be a consequence of their smaller body size relative to honeybees.  相似文献   

17.
Didynamous stamens are separated into two pairs of different length, and the implication of this arrangement has not been well understood. The functional advantages of didynamous stamens were investigated in Brandisia hancei. Change of stamens during floral aging was recorded; the quantity, viability, and siring ability of pollen grains were tested; the anther arrangement was manipulated into four types based on stamen category and number, and fruit set and number of seeds per fruit were measured. Didynamous stamens exhibited staggered anther arrangement, and pollen sacs dehisced gradually. There was no difference for quantity, viability, and siring ability of pollen grains between the two pairs of anthers. Seed production after the removal of one long and one short stamen was higher than that of two long or two short stamens. Through prolonging pollen presentation and promoting delayed self-pollination, staggered arrangement and sequential dehiscence of anthers in didynamous stamens facilitate reproductive fitness of B. hancei.  相似文献   

18.
  • This study tested the hypothesis that self‐compatibility would be associated with floral traits that facilitate autonomous self‐pollination to ensure reproduction under low pollinator visitation. In a comparison of two pairs of Ipomoea species with contrasting breeding systems, we predicted that self‐compatible (SC) species would have smaller, less variable flowers, reduced herkogamy, lower pollinator visitation and higher reproductive success than their self‐incompatible (SI) congeners.
  • We studied sympatric species pairs, I. hederacea (SC)– I. mitchellae (SI) and I. purpurea (SC)–I. indica (SI), in Mexico, over two years. We quantified variation in floral traits and nectar production, documented pollinator visitation, and determined natural fruit and seed set. Hand‐pollination and bagging experiments were conducted to determine potential for autonomous self‐pollination and apomixis.
  • Self‐compatible Ipomoea species had smaller flowers and lower nectar production than SI species; however, floral variation and integration did not vary according to breeding system. Bees were primary pollinators of all species, but visitation rates were seven times lower in SC than SI species. SC species had a high capacity for autonomous self‐pollination due to reduced herkogamy at the highest anther levels. Self‐compatible species had two to six times higher fruit set than SI species.
  • Results generally support the hypothesis that self‐compatibility and autonomous self‐pollination ensure reproduction under low pollinator visitation. However, high variation in morphological traits of SC Ipomoea species suggests they maintain variation through outcrossing. Furthermore, reduced herkogamy was associated with high potential for autonomous self‐pollination, providing a reproductive advantage that possibly underlies transitions to self‐compatibility in Ipomoea.
  相似文献   

19.
Plant species abundance is partly determined by reproductive success and the factors that limit this success. We studied the flowering phenology, breeding systems and florivory in a community of seven epiphytic Tillandsia spp. in a tropical dry forest in central Mexico. Flowering periods were distributed throughout the year, and corolla sizes suggested that most species share pollinators. The most common breeding system was self‐incompatibility (Tillandsia achyrostachys, T. caput‐medusae and T. hubertiana), T. lydiae was infertile, T. circinnatioides was partially self‐compatible and T. recurvata and T. schiedeana were self‐compatible with high autonomous self‐pollination. Floral morphology suggests that delayed selfing occurs in the autonomous self‐pollinated species, and separation between stigma and stamens could result in self‐pollination in the remaining species being avoided. Less than 5% of the inflorescences in the most abundant species (T. recurvata) suffered damage by florivores, but > 40% of inflorescences were damaged in the other species. In damaged inflorescences, fruit set decreased by up to 89%. Our data show that the dominant species (T. recurvata) is autogamous and its reproductive success is slightly reduced by resource constraints and florivory. In the less abundant species, resource limitation and florivory dramatically reduced reproductive success, but the strength of these limiting factors is season dependent. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 50–65.  相似文献   

20.
In many nectarless flowering plants, pollen serves as both the carrier of male gametes and as food for pollinators. This can generate an evolutionary conflict if the use of pollen as food by pollinators reduces the number of gametes available for cross‐fertilization. Heteranthery, the production of two or more stamen types by individual flowers reduces this conflict by allowing different stamens to specialize in ‘pollinating’ and ‘feeding’ functions. We used experimental studies of Solanum rostratum (Solanaceae) and theoretical models to investigate this ‘division of labour’ hypothesis. Flight cage experiments with pollinating bumble bees (Bombus impatiens) demonstrated that although feeding anthers are preferentially manipulated by bees, pollinating anthers export more pollen to other flowers. Evolutionary stability analysis of a model of pollination by pollen consumers indicated that heteranthery evolves when bees consume more pollen than should optimally be exchanged for visitation services, particularly when pollinators adjust their visitation according to the amount of pollen collected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号