首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous study suggested that aluminium (Al) stress increased plasma membrane (PM) H+-ATPase activity and citrate secretion and simultaneously enhanced the interaction between 14-3-3 proteins and phosphorylated PM H+-ATPase in Al-resistant Tamba black soybean (RB). Adenosine 5′-monophosphate (AMP) is known as an inhibitor of the interaction between 14-3-3 proteins and PM H+-ATPases. To investigate the effects of AMP on Al resistance, PM H+-ATPase activity and citrate exudation, AMP was used to treat Al-stressed RB. The results showed that after treatment with either 100 μM AMP or 50 μM Al for 8 h, RB root growth was inhibited by approximately 50 and 30%, respectively. However, simultaneous treatment with 100 μM AMP and 50 μM Al for 8 h resulted in a 60% inhibition of RB root growth, indicating that the presence of AMP reduced Al tolerance in RB. The interaction of PM H+-ATPase and 14-3-3 proteins in the root tips of Al-treated RB was stronger than that in the untreated control. However, the interaction of the two proteins was greatly reduced (lower than that in the control) after co-treatment with Al and AMP, suggesting that the presence of AMP under Al stress reduced the Al-enhanced interaction between PM H+-ATPase and 14-3-3 proteins. Consequently, PM H+-ATPase activity decreased by approximately 50%, which led to a significant decrease in H+ efflux and citrate secretion in RB roots under Al stress. Collectively, these results indicate that AMP reduced citrate exudation and Al resistance in RB by inhibiting the interaction between 14-3-3 proteins and PM H+-ATPases under Al stress.  相似文献   

2.
3.
4.
Hydrogen sulfide alleviates aluminum toxicity in barley seedlings   总被引:3,自引:0,他引:3  

Aims

Aluminum (Al) toxicity is one of the major factors that limit plant growth. Low concentration of hydrogen sulfide (H2S) has been proven to function in physiological responses to various stresses. The objective of this study is to investigate the possible role of H2S in Al toxicity in barley (Hordeum vulgare L) seedlings.

Methods

Barley seedlings pre-treated with sodium hydrosulfide (NaHS), a H2S donor, and subsequently exposed to Al treatment were studied for their effects on root elongation, Al accumulation in seedlings, Al-induced citrate secretion and oxidative stress, and plasma membrane (PM) H+-ATPase expression.

Results

Our results showed that H2S had significant rescue effects on Al-induced inhibition of root elongation which was correlated well with the decrease of Al accumulation in seedlings. Meanwhile, Al-induced citrate secretion was also significantly enhanced by NaHS pretreatment. Al-induced oxidative stress as indicated by lipid peroxidation and reactive oxygen species burst was alleviated by H2S through the activation of the antioxidant system. Moreover, Al-induced reduction in PM H+-ATPase expression was reversed by exogenous NaHS.

Conclusions

Altogether, our results suggest H2S plays an ameliorative role in protecting plants against Al toxicity by inducing the activities of antioxidant enzymes, increasing citrate secretion and citrate transporter gene expression, and enhancing the expression of PM H+-ATPase.  相似文献   

5.
As a major antioxidant in plants, ascorbic acid (AsA) plays a very important role in the response to aluminum (Al) stress. However, the effect of AsA on the mitigation of Al toxicity and the mechanism of nitrate nitrogen (NO3 ?–N) uptake by plants under Al stress are unclear. In this study, a hydroponic experiment was conducted using peak 1 A rice (sterile line, Indica) with weaker resistance to Al and peak 1 superior 5 rice (F1 hybrid, Indica) with stronger resistance to Al to study the effects of exogenous AsA on the physiological and biochemical responses to NO3 ?–N uptake by rice roots exposed to 50 μmol L?1 Al. Al stress induced increases in the concentrations of H2O2 and malondialdehyde (MDA) and in the activities of antioxidant enzymes [such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)]. Plasma membrane (PM) H+-ATPase and H+-pump activities, endogenous AsA content and NO3 ?–N uptake in rice roots decreased under Al stress. After treatment with 2 mmol L?1 exogenous AsA combined with Al, concentrations of H2O2 and MDA in roots notably decreased, and endogenous AsA content and activities of SOD, POD, CAT, and APX in rice roots increased significantly; furthermore, the interaction of PM H+-ATPase and the 14-3-3 protein was also enhanced significantly compared with that in control plants without AsA treatment, which clearly increased NO3 ?–N uptake. Based on all of these data, the application of AsA significantly reduced the accumulation of H2O2 and MDA and increased the activities of PM H+-ATPase and the H+-pump by increasing the endogenous AsA content, the antioxidant enzyme activities, and the interaction of PM H+-ATPase and the 14-3-3 protein in the roots of the two rice cultivars under Al stress, thereby improving the uptake of NO3 ?–N in rice.  相似文献   

6.
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in turgor, was found to activate the H+ efflux 5-fold. The same increment was observed in the number of high-affinity fusicoccin-binding sites in isolated plasma membranes; the 14-3-3 content in the membranes increased 2- to 3-fold, while the H+-ATPase activity changed only slightly. The data obtained indicate that osmotic regulation of H+-ATPase in the plant plasma membrane is achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such regulation involves 14-3-3 proteins. Received: 10 February 2000 / Accepted: 31 March 2000  相似文献   

7.
Cold stress is one of the major environmental factors limiting the amount of plant mass for bioenergy production. A chilling-sensitive Jatropha (Jatropha curcas L.) as a bioenergy crop was used to investigate the cold injury process at the physiological and biochemical levels. Various physiological parameters such as leaf length, width, stomatal conductance, chlorophyll fluorescence, and electrolyte leakage were measured to determine the growth rate of leaves cold-treated (7 and 2 °C) for 5 days. These parameters of cold-treated Jatropha were significantly reduced from day 1 compared with control (23 °C). Using the pH indicator bromocresol purple, it was shown that surface pH of Jatropha root in control was strongly acidified by time only from the starting pH 6, while H+-efflux of the surface of cold-treated roots did not change. H+-ATPase activity of plasma membrane (PM) isolated from leaves and roots of cold-treated Jatropha was decreased in a time-dependent manner. The expression of PM H+-ATPase and 14-3-3 protein, which participates in phosphorylation of PM H+-ATPase was reduced in the presence of cold stress. Interestingly, fusicoccin, an activator of the PM H+-ATPase, alleviated cold-injury by stimulating the enzyme in leaves. These results may suggest that the activity and expression of PM H+-ATPase in Jatropha is closely related to the overcoming of cold stress.  相似文献   

8.
9.
The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H+-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H+-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H+-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H+-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H+-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H+-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.  相似文献   

10.
All higher plants have high-specific sites for binding fusicoccin (FCBS), a metabolite of the fungus Fusicoccum amygdaliDel. These sites are localized on the plasmalemma and produced by the association of the dimers of 14-3-3 proteins with the C-terminal autoinhibitory domain of H+-ATPase. Considering the fusicoccin binding to the plasmalemma as an index characterizing the formation of this complex, we studied the influence of osmotic stress on the interaction between 14-3-3 proteins and H+-ATPase in the suspension-cultured sugar beet cells and protoplasts obtained from them. An increase in the osmolarity of the extracellular medium up to 0.3 Osm was shown to enhance proton efflux from the cells by several times. The number of FCBS in isolated plasma membranes increased in parallel, whereas 14-3-3 proteins accumulated in this membrane to a lesser degree. The amount of H+-ATPase molecules did not change, and the ATP-hydrolase activity changed insignificantly. The data obtained indicate that osmotic stress affects H+-ATPase pumping in the plasmalemma through its influence on the coupling between H+-transport and ATP hydrolysis; 14-3-3 proteins are involved in this coupling. The interaction between the plasmalemma and the cell wall is suggested to be very important in this process.  相似文献   

11.

Key message

AtPrx64 is one of the peroxidases gene up-regulated in Al stress and has some functions in the formation of plant second cell wall. Its overexpression may improve plant tolerance to Al by some ways. Studies on its function under Al stress may help us to understand the mechanism of plant tolerance to Al stress.

Abstract

In Arabidopsis thaliana, the expressions of some genes (AtPrxs) encoding class III plant peroxidases have been found to be either up-regulated or down-regulated under aluminum (Al) stress. Among 73 genes that encode AtPrxs in Arabidopsis, AtPrx64 is always up-regulated by Al stress, suggesting this gene plays protective roles in response to such stress. In this study, transgenic tobacco plants were generated to examine the effects of overexpressing of AtPrx64 gene on the tolerance to Al stress. The results showed that overexpression of AtPrx64 gene increased the root growth and reduced the accumulation of Al and ROS in the roots. Compared with wild type controls, transgenic tobaccos had much less soluble proteins and malondialdehyde in roots and much more root citrate exudation. The activity of plasma membrane (PM) H+-ATPase, the phosphorylation of PM H+-ATPase and its interaction with 14-3-3 proteins increased in transgenic tobaccos; moreover, the content of lignin in root tips also increased. Taken together, these results showed that overexpression of AtPrx64 gene might enhance the tolerance of tobacco to Al stress.
  相似文献   

12.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   

13.
The plant plasma-membrane H+-ATPase (EC 3.6.1.35) contains a C-terminal autoinhibitory domain whose displacement from the catalytic site is caused by treatment of intact plant tissue with the phytotoxin fusicoccin (FC). The FC-induced activation of the H+-ATPase was proposed to involve a direct interaction of 14-3-3 proteins with the H+-ATPase. By analysing plasma membranes derived from leaves of Commelina communis L., direct biochemical evidence has now been obtained for a complex between the C-terminus of the H+-ATPase and a 14-3-3 dimer. Stabilization of this complex was achieved by FC treatment in vivo or in vitro. Furthermore, the C-terminal domain of the H+-ATPase in association with a 14-3-3 dimer is essential for the creation of a functional FC-binding complex. Received: 1 August 1998 / Accepted: 15 September 1998  相似文献   

14.
Camelina (Camelina sativa) and rapeseed (Brassica napus) are well-established oil-seed crops with great promise also for biofuels. Both are cold-tolerant, and camelina is regarded to be especially appropriate for production on marginal lands. We examined physiological and biochemical alterations in both species during cold stress treatment for 3 days and subsequent recovery at the temperature of 25 °C for 0, 0.25, 0.5, 1, 2, 6, and 24 h, with particular emphasis on the post-translational regulation of the plasma membrane (PM) H+-ATPase (EC3.6.3.14). The activity and translation of the PM H+-ATPase, as well as 14-3-3 proteins, increased after 3 days of cold stress in both species but recovery under normal conditions proceeded differently. The increase in H+-ATPase activity was the most dramatic in camelina roots after recovery for 2 h at 25 °C, followed by decay to background levels within 24 h. In rapeseed, the change in H+-ATPase activity during the recovery period was less pronounced. Furthermore, H+-pumping increased in both species after 15 min recovery, but to twice the level in camelina roots compared to rapeseed. Protein gel blot analysis with phospho-threonine anti-bodies showed that an increase in phosphorylation levels paralleled the increase in H+-transport rate. Thus our results suggest that cold stress and recovery in camelina and rapeseed are associated with PM H+-fluxes that may be regulated by specific translational and post-translational modifications.  相似文献   

15.
Suaeda salsa calli treated with different concentrations of NaCl were used to examine the response of the plasma membrane (PM) H+-ATPase to NaCl and its role in salt tolerance. The optimum concentration of NaCl for growth of the calli was 50 mM, while growth was significantly inhibited at 250 mM NaCl. The ion and organic solute contents of calli increased with increasing NaCl. Activity of the PM H+-ATPase increased when the calli were treated with NaCl over a certain concentration range (0–150 mM NaCl). However, the activity reached its maximum with 150 mM NaCl. Immunoblotting analysis of the PM H+-ATPase protein from calli cultures with anti-Zea mays H+-ATPase serum (monoclonal 46E5B11D5) identified a single polypeptide of ~90 kDa. The peptide levels increased in the calli treated with NaCl at 150 mM NaCl compared to control, but the increase at 50 mM NaCl was less pronounced. Northern blot analysis showed that the expression of the PM H+-ATPase also increased after the calli were treated with NaCl. These results suggest that the increase in PM H+-ATPase activity is due to both an increase in the amount of PM H+-ATPase protein and an up-regulation of the PM H+-ATPase gene, which is involved in the salt tolerance of S. salsa calli.  相似文献   

16.
In the present study, the role of ethylene in nitric oxide (NO)-mediated protection by modulating ion homeostasis in Arabidopsis callus under salt stress was investigated. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). Under 100 mM NaCl, etr1-3 callus displayed a greater electrolyte leakage and Na+/K+ ratio but a lower plasma membrane (PM) H+-ATPase activity compared to WT callus. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or sodium nitroprusside (SNP, a NO donor) alleviated NaCl-induced injury by maintaining a lower Na+/K+ ratio and an increased PM H+-ATPase activity in WT callus but not in etr1-3 callus. The SNP actions in NaCl stress were attenuated by a specific NO scavenger or an ethylene biosynthesis inhibitor in WT callus. Under 100 mM NaCl, the NO accumulation and ethylene emission appeared at early time, and NO production greatly stimulated ethylene emission in WT callus. In addition, ethylene induced the expression of PM H+-ATPase genes under salt stress. The recovery experiment showed that NaCl-induced injury was reversible, as signaled by the similar recovery of Na+/K+ ratio and PM H+-ATPase activity in WT callus. Taken together, the results indicate that ethylene and NO cooperate in stimulating PM H+-ATPase activity to modulate ion homeostasis for salt tolerance, and ethylene may be a part of the downstream signal molecular in NO action.  相似文献   

17.
Aluminum-induced citric acid (CA) root secretion is a widely accepted mechanism to explain Al-resistance in maize. Nonetheless, several aspects of this mechanism remain controversial. In this study, we used paclobutrazol (PBZ), a plant growth retardant, to gain new insights into the relationship between Δ5-sterol composition, membrane permeability, (PM) H+-ATPase activity and CA secretion in an Al-sensitive (UFVM-100) and Al-resistant (UFVM-200) maize genotypes challenged with Al. The Al-sensitive genotype displayed greater concentrations of Al in the root tips and greater inhibition of root elongation (RE), which was accompanied by greater electrolyte leakage and greater reduction in the Δ5-sterols content after Al treatment. CA secretion by roots increased in both genotypes after Al treatment but to a greater extent in the Al-resistant genotype. The (PM) H+-ATPase activity was down-regulated in the sensitive cultivar and up-regulated in its resistant counterpart upon Al treatment. A significant correlation between (PM) H+-ATPase activity and CA secretion was observed, but only in the Al-resistant genotype. Upon adding PBZ to the Al-treated plants, differences in the RE and Δ5-sterol composition between the maize genotypes were fully abolished, whereas genotypic differences in CA secretion and (PM) H+-ATPase activity were reduced but not completely eliminated. Taken together, this information suggests the existence of other processes or mechanisms operating in the Al resistance in these two maize genotypes.  相似文献   

18.
Na+/H+ antiporters are involved in ensuring optimal intracellular concentrations of alkali-metal cations and protons in most organisms. In Saccharomyces cerevisiae, the plasma-membrane Na+, K+/H+ antiporter Nha1 mediates Na+ and K+ efflux, which is important for cell growth in the presence of salts. Nha1 belongs among housekeeping proteins and, due to its ability to export K+, it has many physiological functions. The Nha1 transport activity is regulated through its long, hydrophilic and unstructured C-terminus (554 of 985 aa). Although Nha1 has been previously shown to interact with the yeast 14-3-3 isoform (Bmh2), the binding site remains unknown. In this work, we identified the residues through which Nha1 interacts with the 14-3-3 protein. Biophysical characterization of the interaction between the C-terminal polypeptide of Nha1 and Bmh proteins in vitro revealed that the 14-3-3 protein binds to phosphorylated Ser481 of Nha1, and the crystal structure of the phosphopeptide containing Ser481 bound to Bmh1 provided the structural basis of this interaction. Our data indicate that 14-3-3 binding induces a disorder-to-order transition of the C-terminus of Nha1, and in vivo experiments showed that the mutation of Ser481 to Ala significantly increases cation efflux activity via Nha1, which renders cells sensitive to low K+ concentrations. Hence, 14-3-3 binding is apparently essential for the negative regulation of Nha1 activity, which should be low under standard growth conditions, when low amounts of toxic salts are present and yeast cells need to accumulate high amounts of K+.  相似文献   

19.
Hydrogen sulphide (H2S) is emerging as an important signalling molecule involved in plant resistance to various stresses. However, the underlying mechanism of H2S in aluminium (Al) resistance and the crosstalk between H2S and nitric oxide (NO) in Al stress signalling remain elusive. Citrate secretion is a wide‐spread strategy for plants against Al toxicity. Here, two citrate transporter genes, GmMATE13 and GmMATE47, were identified and characterized in soybean. Functional analysis in Xenopus oocytes and transgenic Arabidopsis showed that GmMATE13 and GmMATE47 mediated citrate exudation and enhanced Al resistance. Al treatment triggered H2S generation and citrate exudation in soybean roots. Pretreatment with an H2S donor significantly elevated Al‐induced citrate exudation, reduced Al accumulation in root tips, and alleviated Al‐induced inhibition of root elongation, whereas application of an H2S scavenger elicited the opposite effect. Furthermore, H2S and NO mediated Al‐induced GmMATE expression and plasma membrane (PM) H+‐ATPase activity and expression. Further investigation showed that NO induced H2S production by regulating the key enzymes involved in biosynthesis and degradation of H2S. These findings indicate that H2S acts downstream of NO in mediating Al‐induced citrate secretion through the upregulation of PM H+‐ATPase‐coupled citrate transporter cotransport systems, thereby conferring plant resistance to Al toxicity.  相似文献   

20.
Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation.Alkaline soils occur commonly in terrestrial ecology, in particular in areas affected by salinity, thus contributing to one of the most widespread environmental challenges that limit agricultural productivity globally (Kawanabe and Zhu, 1991; Ge et al., 2010; Xu et al., 2012a). Worldwide, it is estimated that up to 831 × 106 ha of land is saline, and more than half of this area is alkalinized. High-pH stress limits the survival of most plants under these conditions and can be a more significant factor in reducing plant growth than the stress resulting from salinity (Guo et al., 2010). Improved understanding of the basic mechanisms of plant responses to alkaline stress is urgently needed and will aid biotechnological efforts focused on breeding suitable crops for fodder and human food on these unproductive lands.Primary root elongation regulated by a sensory zone in the root tip plays a pivotal role in the plastic acclimation response to fluctuating soil environments (Baluška et al., 2010). The root functions simultaneously as an organ for the uptake and transport of water and nutrients and as the primary site for the perception of soil stresses. Thus, roots must be the obvious first focus in any examination of the adaptive and acclimation mechanisms underpinning the alkaline stress response. However, currently, only limited information is available on this particular form of stress (Degenhardt et al., 2000; Zhu, 2001; Yang et al., 2008).Acidification of the aqueous fraction of the cell wall apoplast by H+ excretion via the plasma membrane (PM) H+-ATPase is a critical component of the growth-promoting effect and a key factor determining the elongation of the primary root (Moloney et al., 1981; Palmgren, 2001). Optimal primary root elongation requires the fine regulation of H+-ATPase-mediated H+ efflux, particularly at the root tip (Staal et al., 2011; Haruta and Sussman, 2012). Under alkaline stress, in Arabidopsis (Arabidopsis thaliana), PROTEIN KINASE5 (PKS5) and the chaperone DNAJ HOMOLOG3 (J3) play important roles in H+ efflux by regulating the interaction between PM H+-ATPase and 14-3-3 proteins (Fuglsang et al., 2007; Yang et al., 2010). Furthermore, PIN-FORMED2 (PIN2), an auxin (indole-3-acetic acid [IAA]) efflux transporter, is required for the acclimation of roots to alkaline stress through the modulation of H+ secretion in the root tip, maintaining primary root elongation (Xu et al., 2012a). However, these mechanisms, and other physiologically relevant processes that may fine-tune root-apical responses to alkaline stress, have not been investigated in depth.The 14-3-3 proteins are highly conserved, and nearly ubiquitous, phosphoserine-binding proteins that regulate the activities of a wide array of targets via direct protein-protein interactions (Moore and Perez, 1967; Comparot et al., 2003). In higher plants, 14-3-3 proteins are encoded by a multigene family and play important roles in regulating plant development and stress responses (Mayfield et al., 2012). Although 14-3-3 proteins in plants possess a highly conserved target-binding domain, several studies indicate that various 14-3-3 isoforms may regulate different targets or act in distinct locations under variable abiotic stresses (Sehnke et al., 2002; Xu et al., 2012b). At least 12 genes predicted to encode 14-3-3 proteins (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) have been identified in tomato (Solanum lycopersicum; Roberts, 2003; Xu and Shi, 2006). However, little is known about the detailed actions of tomato 14-3-3 proteins in response to alkaline stress in relation to H+ secretion, auxin modulation, or specific signaling pathways. Thus, in this study, we investigated the roles of tomato 14-3-3 proteins, incorporated into Arabidopsis, in root acclimation to alkaline stress and the involvement of PKS5 and J3 in modulating H+ secretion and basipetal (shoot-ward) IAA transport for maintaining primary root elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号