首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Zou Y  Wang Y 《Biochemistry》2005,44(16):6293-6301
High-mobility group (HMG) A1a and A1b proteins are among a family of HMGA proteins that bind to the minor groove of AT-rich regions of DNA. Here we employed tandem mass spectrometry and determined without ambiguity the sites of phosphorylation and the nature of methylation of HMGA1 proteins that were isolated from the PC-3 human prostate cancer cells. We showed by LC-MS/MS that Ser101 and Ser102 were completely phosphorylated in HMGA1a protein, whereas only a portion of the protein was phosphorylated at Ser98. We also found that the HMGA1b protein was phosphorylated at the corresponding sites, that is, Ser90, Ser91 and Ser87. In addition, Arg25, which is within the first DNA-binding AT-hook domain of HMGA1a, was both mono- and dimethylated. Moreover, both symmetric and asymmetric dimethylations were observed. The closely related HMGA1b protein, however, was not methylated. The unambiguous identification of the sites of phosphorylation and the nature of methylation facilitates the future examination of the biological implications of the HMGA1 proteins.  相似文献   

3.
4.
5.
6.
Receptor interacting protein 140 (RIP140), a ligand-dependent corepressor for nuclear receptors, can be modified by arginine methylation. Three methylated arginine residues, at Arg-240, Arg-650, and Arg-948, were identified by mass spectrometric analysis. Site-directed mutagenesis studies demonstrated the functionality of these arginine residues. The biological activity of RIP140 was suppressed by protein arginine methyltransferase 1 (PRMT1) due to RIP140 methylation, which reduced the recruitment of histone deacetylases to RIP140 and facilitated its nuclear export by enhancing interaction with exportin 1. A constitutive negative (Arg/Ala) mutant of RIP140 was resistant to the effect of PRMT1, and a constitutive positive (Arg/Phe) mutation mimicked the effect of arginine methylation. The biological activities of the wild type and the mutant proteins were examined in RIP140-null MEF cells. This study uncovered a novel means to inactivate, or suppress, RIP140, and demonstrated protein arginine methylation as a critical type of modification for corepressor.  相似文献   

7.
8.
9.
Exon 15 of the fragile X mental retardation protein gene (FMR1) is alternatively spliced into three variants. The amino acids encoded by the 5' end of the exon contain several regulatory determinants including phosphorylation sites and a potential conformational switch. Residues encoded by the 3' end of the exon specify FMRP's RGG box, an RNA binding domain that interacts with G-quartet motifs. Previous studies demonstrated that the exon 15-encoded N-terminal residues influence the extent of arginine methylation, independent of S 500 phosphorylation. In the present study we focus on the role the putative conformational switch plays in arginine methylation. Chemical and structural probing of Ex15 alternatively spliced variant proteins and several mutants leads to the following conclusions: Ex15c resides largely in a conformation that is refractory toward methylation; however, it can be methylated by supplementing extracts with recombinant PRMT1 or PRMT3. Protein modeling studies reveal that the RG-rich region is part of a three to four strand antiparallel beta-sheet, which in other RNA binding proteins functions as a platform for nucleic acid interactions. In the Ex15c variant the first strand of this sheet is truncated, and this significantly perturbs the side-chain conformations of the arginine residues in the RG-rich region. Mutating R 507 in the conformational switch to K also truncates the first strand of the beta-sheet, and corresponding decreases in in vitro methylation were found for this and R 507/R 544 and R 507/R 546 double mutants. These effects are not due to the loss of R 507 methylation as a conformational switch-containing peptide reacted under substrate excess and in methyl donor excess was not significantly methylated. Consistent with this, similar changes in beta-sheet structure and decreases in in vitro methylation were observed with a W 513-K mutant. These data support a novel model for FMRP arginine methylation and a role for conformational switch residues in arginine modification.  相似文献   

10.
Programmed cell death is characterized by posttranslational modifications of a limited and specific set of nuclear proteins. We demonstrate that during apoptosis of different types of tumor cells there is a monomethylation of the nuclear protein HMGA1a that is associated to its previously described hyperphosphorylation/dephosphorylation process. HMGA1a methylation is strictly related to the execution of programmed cell death and is a massive event that involves large amounts of the protein. In some tumor cells, HMGA1a protein is already methylated to an extent that depends on cell type. The degree of methylation in any case definitely increases during apoptosis. In the studied cell systems (human leukaemia, human prostate tumor, and rat thyroid transformed cells) among the low-molecular-mass HMG proteins, only HMGA1a was found to be methylated. A tryptic digestion map of HPLC-purified HMGA1a protein showed that methylation occurs at arginine 25 in the consensus G(24)R(25)G(26) that belongs to one of the DNA-binding AT-hooks of the protein. An increase of HMGA1a methylation could be related to heterochromatin and chromatin remodeling of apoptotic cells.  相似文献   

11.
Plant high-mobility-group (HMG) chromosomal proteins are the most abundant and ubiquitous nonhistone proteins found in the nuclei of higher eukaryotes. There are only two families of HMG proteins, namely, HMGA and HMGB in plants. The cDNA encoding wheat HMGa protein was isolated and characterized. Wheat HMGA cDNA encodes a protein of 189 amino acid residues. At its N terminus, there is a histone H1-like structure, which is a common feature of plant HMGA proteins, followed by four AT-hook motifs. Polymerase chain reaction results show that the gene contains a single intron of 134 bp. All four AT-hook motifs are encoded by the second exon. Northern blot results show that the expression of HMGA gene is much higher in organs undergoing active cell proliferation. Gel retardation analysis show that wheat HMGa, b, c and histone H1 bind to four-way-junction DNA with high binding affinity, but affinity is dramatically reduced with increasing Mg(2+) and Na(+) ion concentration. Competition binding studies show that proteins share overlapping binding sites on four-way-junction DNA. HMGd does not bind to four-way-junction DNA.  相似文献   

12.
Singh M  D'Silva L  Holak TA 《Biological chemistry》2006,387(10-11):1469-1478
The hBRG1 protein, a central ATPase of the human switching/sucrose non-fermenting (SWI/SNF) remodeling complex, has a catalytic ATPase domain, an AT-hook motif and a bromodomain. Bromodomains, found in many chromatin-associated proteins, recognize N-acetyl-lysine in histones and other proteins. The AT-hook motif, first described in the high-mobility group of non-histone chromosomal proteins HMGA1/2, is a DNA-binding motif. The AT-hook binds to the AT-rich DNA sequences in the minor groove of B-DNA in a non-sequence specific manner. AT-hook motifs have been identified in many other DNA-binding proteins. In this study we cloned and purified a fragment of hBRG1 encompassing the AT-hook region and the bromodomain. Nuclear magnetic resonance (NMR) and circular dichroism (CD) analyses show that the recombinant domains are structured. The functionality of subdomains was checked by assessing their interactions with N-acetylated peptides from histones and with DNA. Isothermal titration calorimetric (ITC) analysis demonstrates that the primary micromolar interaction is through the AT-hook motif. The AT-hook region binds to linear DNA by unwinding it. These properties resemble the characteristics of the HMGA1/2 proteins and their interaction with DNA.  相似文献   

13.
14.
15.
16.
Arginine methylation is a post-translational modification found mostly in RNA-binding proteins. Poly(A)-binding protein II from calf thymus was shown by mass spectrometry and sequencing to contain NG, NG-dimethylarginine at 13 positions in its amino acid sequence. Two additional arginine residues were partially methylated. Almost all of the modified residues were found in Arg-Xaa-Arg clusters in the C terminus of the protein. These motifs are distinct from Arg-Gly-Gly motifs that have been previously described as sites and specificity determinants for asymmetric arginine dimethylation. Poly(A)-binding protein II and deletion mutants expressed in Escherichia coli were in vitro substrates for two mammalian protein arginine methyltransferases, PRMT1 and PRMT3, with S-adenosyl-L-methionine as the methyl group donor. Both PRMT1 and PRMT3 specifically methylated arginines in the C-terminal domain corresponding to the naturally modified sites.  相似文献   

17.
18.
Arginine methylation is a posttranslational protein modification catalyzed by a family of protein arginine methyltransferases (PRMT), the predominant member of which is PRMT1. Despite its major role in arginine methylation of nuclear proteins, surprisingly little is known about the subcellular localization and dynamics of PRMT1. We show here that only a fraction of PRMT1 is located in the nucleus, but the protein is predominantly cytoplasmic. Fluorescence recovery after photobleaching experiments reveal that PRMT1 is highly mobile both in the cytoplasm and the nucleus. However, inhibition of methylation leads to a significant nuclear accumulation of PRMT1, concomitant with the appearance of an immobile fraction of the protein in the nucleus, but not the cytoplasm. Both the accumulation and immobility of PRMT1 is reversed when re-methylation is allowed, suggesting a mechanism where PRMT1 is trapped by unmethylated substrates such as core histones and heterogeneous nuclear ribonucleoprotein proteins until it has executed the methylation reaction.  相似文献   

19.
20.
Methylation of protein arginines represents an important post-translational modification mechanism, which has so far primarily been characterized in mammalian cells. In this work, we successfully identified and characterized arginine methylation as a crucial type of post-translational modification in the activity regulation of the cytosolic translation repressor protein NAB1 in the plant model organism Chlamydomonas reinhardtii. NAB1 represses the cytosolic translation of light-harvesting protein encoding mRNAs by sequestration into translationally silent messenger ribonucleoprotein complexes (mRNPs). Protein arginine methylation of NAB1 could be demonstrated by PRMT1 catalyzed methylation of recombinant NAB1 in vitro, and by immunodetection of methylated NAB1 arginines in vivo. Mass spectrometric analyses of NAB1 purified from C. reinhardtii revealed the asymmetric dimethylation of Arg90 and Arg92 within GAR motif I. Inhibition of arginine methylation by either adenosine-2'-3'-dialdehyde (AdOx) or 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid) sodium salt hydrate (AMI-1) caused a dark-green phenotype characterized by the increased accumulation of light-harvesting complex proteins, and indicating a reduced translation repressor activity of NAB1. The extent of NAB1 arginine methylation depends on the growth conditions, with phototrophic growth causing a high methylation state and heterotrophic growth resulting in lowered methylation of the protein. In addition, we could show that NAB1 activity regulation by arginine methylation operates independently from cysteine-based redox control, which has previously been shown to control the activity of NAB1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号