首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A range of catechins and oligomeric procyanidins was purified by high performance liquid chromatography (HPLC) from grape seed, apple skin, lentil and almond flesh. Catechins, galloylated epicatechin, glycosylated catechin, procyanidin dimers, galloylated dimers, trimer, and tetramer species were all identified, purified and quantified by HPLC, LC-MS and NMR. The antioxidant properties of these compounds were assessed using two methods: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; (b) scavenging of the radical cation of 2,2′-azinobis(3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). Antioxidant activity in the lipid phase decreased with polymerisation in contrast with antioxidant action in the aqueous phase which increased from monomer to trimer and then decreased from trimer to tetramer. Galloylation of catechin and dimeric procyanidins decreased lipid phase and increased aqueous phase antioxidant activity. Glycosylation of catechin demonstrated decreased activity in both phases.  相似文献   

2.
Influence of oligomer chain length on the antioxidant activity of procyanidins   总被引:11,自引:0,他引:11  
The antioxidant activity of catechin monomers and procyanidin (dimers to hexamers) fractions purified from cocoa was studied in two in vitro systems: liposomes and human LDL. Liposome oxidation (evaluated as formation of 2-thiobarbituric acid reactive substances) was initiated with 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), 2,2'-azobis (2,4-dimethylvaleronitrile) (AMVN), iron/ascorbate, or UV-C; LDL oxidation (evaluated as formation of conjugated dienes) was initiated with Cu(2+) or AAPH. Catechin monomers and procyanidin fractions inhibited both liposome and LDL oxidation. Monomers, dimers, and trimers fractions were the most effective antioxidants when liposome oxidation was initiated in the aqueous phase. When oxidation was initiated in the lipid domains, higher molecular weight procyanidins were the most effective. All fractions significantly inhibited Cu-mediated LDL oxidation; no significant effect of procyanidin molecular weight was observed. The hexamer fraction was the least effective with respect to preventing AAPH initiated LDL oxidation. Results reported herein give further evidence on the influence of the oligomer chain length on the antioxidant protection by procyanidins.  相似文献   

3.
Gallocatechins and a range of prodelphinidins were purified by high performance liquid chromatography from pomegranate peel. Gallocatechin, gallocatechin-(4-8)-catechin, gallocatechin-(4-8)-gallocatechin and catechin-(4-8)-gallocatechin were all identified, purified and quantified by LC-DAD-MS and MS-MS. The antioxidant properties of these compounds were assessed using two methods: (i) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; and (ii) scavenging of the radical cation of 2,2-azinobis (3-ethyl-benzothiazoline-6-sulphonate, ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). The prodelphinidin dimers were potent antioxidants in the aqueous phase, being much more effective than the gallocatechin monomer. However, in the lipid phase, only one of the dimers (gallocatechin-(4-8)-catechin) was significantly more effective than the monomer in the inhibition of lipid peroxidation of phosphatidylcholine vesicles. This study represents the first report on the antioxidant properties of prodelphinidins.  相似文献   

4.
The flavan-3-ols (-)-epicatechin (epicatechin) and (+)-catechin (catechin) and their related oligomers (procyanidins) isolated from cocoa were assayed for their capacity to inhibit the UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) in calf thymus DNA. The above-mentioned compounds inhibited oxo(8)dG production in a concentration- and time-dependent manner. After 30 min of irradiation (30 kJ/m(2)), 0.1, 1.0, 10, and 100 microM epicatechin inhibited oxo(8)dG formation by 20, 36, 64, and 74%, respectively. For the same dose of UVC, 0.1, 1.0, 10, and 100 microM catechin inhibited oxo(8)dG formation by 1, 23, 50, and 70%, respectively. Epicatechin was more efficient than catechin with respect to inhibiting oxo(8)dG formation (IC(50) 1.7 +/- 0.7 vs 4.0 +/- 0.7 microM). Monomer, tetramer, and hexamer fractions were equally effective in inhibiting oxo(8)dG formation when assayed at 10 microM monomer equivalent concentration. At similar concentrations (1-50 microM), the inhibition of the UVC-mediated oxo(8)dG formation by flavan-3-ols and procyanidins was in the range of that of alpha-tocopherol, Trolox, ascorbate, and glutathione. These results support the concept that flavan-3-ols and their related procyanidins can protect DNA from oxidation at concentrations that can be physiologically relevant. Both epimerism and degree of oligomerization are important determinants of the antioxidant activity of flavan-3-ols and procyanidins.  相似文献   

5.
The soluble proanthocyanidins of the coloured seed coats of Vicia faba L. were isolated and separated by solvent partition. The chemical characteristics of the proanthocyanidins were elucidated by total oxidation and partial degradation in the presence of phloroglucinol followed by HPLC analysis. The native extract of proanthocyanidins contained (+)-gallocatechin, (-)-epigallocatechin, (+)-catechin and (-)-epicatechin units. Oligomeric procyanidins were purified by chromatography on Sephadex LH-20 and the accessible compounds were isolated by RP-HPLC using a Licrospher Li 100 Column. The structures of the purified oligomeric procyanidins were elucidated using a procedure involving TLC, UV spectroscopy, ESI-MS and HPLC analysis of the products from the phloroglucinol reaction. The major condensed tannins of Vicia faba comprise six compounds identified as two A-type procyanidin dimers, the procyanidin dimers B1, B2 and B3, and a procyanidin trimer.  相似文献   

6.
Metabolism of dietary procyanidins in rats   总被引:1,自引:0,他引:1  
Procyanidins are major dietary polyphenols made of elementary flavan-3-ol (epi)catechin units. They have antioxidant properties and may contribute to health benefits in humans, but little is known about their metabolic fate. We compared here the metabolism of procyanidin dimer B3, trimer C2, and polymer isolated from willow tree catkins to that of catechin monomer in rats. These compounds were administered in the rat diet (0.1%, w/w) for 5 d and their metabolites estimated in 24 h urine. In rats fed procyanidins, neither parent compound nor catechin derivatives could be detected in contrast to animals fed catechin monomer, which excreted large amounts of catechin and its 3'-O-methylated form (25.7 +/- 0.6%). On the other hand, 16 metabolites of microbial origin were detected and identified as phenylvaleric, phenylpropionic, phenylacetic, and benzoic acid derivatives. Their total yields significantly decreased from the catechin monomer (10.6 +/- 1.1%) to the procyanidin dimer (6.5 +/- 0.2%), trimer (0.7 +/- 0.1%), and polymer (0.5 +/- 0.1%). Therefore, the degree of procyanidin polymerization has a major impact on their fate in the body characterized by a poor absorption through the gut barrier and a limited metabolism by the intestinal microflora as compared to catechin. This will have to be considered to explain the health effects of procyanidins. The contribution of their microbial metabolites should also be further investigated.  相似文献   

7.
Oligomeric procyanidins were isolated from the leaves and flowers of hawthorn (Crataegus laevigata). A trimer, epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin, and a pentamer consisting of (−)-epicatechin units linked through C-4β/C-8 bonds have been isolated from hawthorn for the first time, in addition to known procyanidins including dimers B-2, B-4 and B-5, trimers C-1 and epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin, and tetramer D-1. A fraction containing a hexamer was also found.  相似文献   

8.
A comparison is made of the antioxidant activity of a water-soluble form of alpha-tocopherol complexed with bovine serum albumin (alpha-T X BSA) with that of micellar alpha-tocopherol and aqueous 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox) to inhibit autoxidation of linoleic acid in sodium dodecyl sulfate micelles. The peroxyl radical trapping ability of alpha-T X BSA compares favorably with that of alpha-tocopherol and Trolox, and all three can be used in quantitative measurements of the susceptibility of the micellar substrate to undergo autoxidation: the oxidizability, for reactions initiated in the micellar phase by di-tertbutylhyponitrite (DBHN) or in the aqueous phase by azobisamidinopropane hydrochloride (ABAP). alpha-Tocopherol and Trolox are also effective antioxidants to inhibit DBHN- or ABAP-initiated autoxidations of dilinoleoylphosphatidylcholine (DLPC) liposomes prepared as multilamellar or unilamellar bilayers characterized by 31P NMR spectra. The oxidizability of DLPC liposomes is determined by various combinations of water-soluble and lipid-soluble initiators and the antioxidants, alpha-tocopherol and Trolox. In contrast, alpha-T X BSA does not effectively trap peroxyl radicals when it is added after initiation of autoxidation in the lipid phase (DBHN) or in the aqueous phase (ABAP). The radical trapping ability of alpha-T X BSA becomes evident if it is mixed with the DLPC for some hours before initiation. This result is interpreted in terms of diffusion of alpha-tocopherol from the bound alpha-T X BSA form to the liposome before it exhibits antioxidant activity.  相似文献   

9.
We have determined the antioxidant activity of the major flavonols found in tea: a monoglycoside, a diglycoside and two triglycosides of kaempferol and three monoglycosides, a diglycoside and two triglycosides of quercetin. The Trolox equivalent antioxidant capacity (TEAC) and inhibition of iron/ascorbate-induced lipid peroxidation of phosphatidyl choline vesicles were measured. In the aqueous phase TEAC assay, the quercetin monoglycosides and diglycoside were approximately half as effective as quercetin aglycone. The quercetin triglycosides were much less effective than the monoglycosides and the diglycoside. The kaempferol glycosides were 32-39% less effective in the aqueous phase antioxidant assay compared to the kaempferol aglycone. Quercetin monoglycosides and diglycoside were potent inhibitors of lipid peroxidation, in contrast to the triglycoside which was much less effective. All the kaempferol glycosides were significantly less potent inhibitors of lipid peroxidation compared to the kaempferol aglycone. The compounds described herein demonstrate the antioxidant activity of the major flavonols in tea and indicate the effect of substituting a range of sugar moieties in the phenolic C ring.  相似文献   

10.
Oligomeric procyanidins were isolated from the leaves and flowers of hawthorn (Crataegus laevigata). A trimer, epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin, and a pentamer consisting of (−)-epicatechin units linked through C-4β/C-8 bonds have been isolated from hawthorn for the first time, in addition to known procyanidins including dimers B-2, B-4 and B-5, trimers C-1 and epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin, and tetramer D-1. A fraction containing a hexamer was also found.  相似文献   

11.
儿茶素分光光度法与微量法抗氧化活性研究   总被引:1,自引:0,他引:1  
为比较微量法和分光光度法的差异,以Trolox为参比物,PG、BHA和BHT为阳性对照品,比较其IC50和TEAC;以儿茶素的抗氧化活性为研究对象,对2种方法的相关性做Paired—samplet t est。发现2种方法所得到的TEAC基本一致,4个标准品和儿茶素的抗氧化活性顺序一致,即:PG〉儿茶素〉BHA〉Trolox〉BHT;2种方法的相关系数r=0.998,显著性P=0.501。研究结果表明,分光光度法操作繁琐费时,用样量大;微量法操作简单快速,用样量小,准确性好,适合对微量天然产物抗氧化活性的评价。  相似文献   

12.
Abstract

We have determined the antioxidant activity of the major flavonols found in tea: a monoglycoside, a diglycoside and two triglycosides of kaempferol and three monoglycosides, a diglycoside and two triglycosides of quercetin. The Trolox equivalent antioxidant capacity (TEAC) and inhibition of iron/ascorbate-induced lipid peroxidation of phosphatidyl choline vesicles were measured. In the aqueous phase TEAC assay, the quercetin monoglycosides and diglycoside were approximately half as effective as quercetin aglycone. The quercetin triglycosides were much less effective than the mono-glycosides and the diglycoside. The kaempferol glycosides were 32–9% less effective in the aqueous phase antioxidant assay compared to the kaempferol aglycone. Quercetin monoglycosides and diglycoside were potent inhibitors of lipid peroxidation, in contrast to the triglycoside which was much less effective. All the kaempferol glycosides were significantly less potent inhibitors of lipid peroxidation compared to the kaempferol aglycone. The compounds described herein demonstrate the antioxidant activity of the major flavonols in tea and indicate the effect of substituting a range of sugar moieties in the phenolic C ring.  相似文献   

13.
An off-line solid-phase extraction (SPE) and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determining procyanidins, catechin, epicatechin, dimer, and trimer in plasma samples. In the validation procedure of the analytical method, linearity, precision, accuracy, detection limits (LODs), quantification limits (LOQs), and the matrix effect were studied. Recoveries of the procyanidins were higher than 84%, except for the trimer, which was 65%. The LODs and LOQs were lower than 0.003 and 0.01 μM, respectively, for all the procyanidins studied, except for the trimers, which were 0.8 and 0.98 μM, respectively. This methodology was then applied for the analysis of rat plasma obtained 2 h after ingestion of grape seed phenolic extract. Monomers (catechin and epicatechin), dimer and trimer in their native form were detected and quantified in plasma samples, and their concentration ranged from 0.85 to 8.55 μM. Moreover, several metabolites, such as catechin and epicatechin glucuronide, catechin and epicatechin methyl glucuronide, and catechin and epicatechin methyl-sulphate were identified. These conjugated forms were quantified, in reference to the respective unconjugated form, showing concentrations between 0.06 and 23.90 μM.  相似文献   

14.
Quantitative kinetic methods of autoxidation are used to determine the antioxidant activities of two water-soluble antioxidants of the chromanol type, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and 6-hydroxy-2,5,7,8- tetramethyl-2-N,N,N-trimethylethanaminium methylbenzene-sulfonate (MDL 73404), during free radical peroxidation of phospholipid membranes of different charge types. The stoichiometric factor (n) for peroxyl radical trapping for both Trolox and MDL 73404 was found to be 2. Trolox was found to partition partially, approximately 20%, into the lipid phase of liposomes. The antioxidant activity of Trolox during peroxidation of membranes determined by measurements of the absolute rate constant for inhibition of oxygen uptake,kinh, was found to vary with the membrane surface charge that is controlled by variation in pH. When peroxidation is initiated in the lipid phase by azo-bis-2,4-dimethylvaleronitrile (ADVN), using a typical zwitterionic liposome, dilinoleoylphosphatidyl choline (DLPC), the kinh was found to be 2.98 × 103 M−1s−1. The kinh of Trolox increased approximately 2-fold for membranes that have positive surface, including DLPC at pH 4, DLPC containing stearylamine at pH 7, and for a membrane of dimyristoylphosphatidic acid containing linoleic acid (DMPA/LA). Conversely, Trolox does not inhibit peroxidation of negatively charged dilinoleoylphosphatidyl glycerol (DLPG) at pH 7–11. Studies made of the positively charged MDL 73404 show that its antioxidant activity using DLPC and DLPG is pH dependent. Trolox inhibits the peroxidations of DLPC initiated in the aqueous phase by azo-bis(2-amidinopropane·HCl)(ABAP) at pH 4 or 7. However, Trolox does not inhibit the peroxidation of DLPG at pH 7. The different antioxidant activities of Trolox and MDL 73404 are rationalized in terms of a peroxyl-radical diffusion model and specific charge interactions between antioxidants and membrane surface.  相似文献   

15.
Antioxidant Properties of the Major Polyphenolic Compounds in Broccoli   总被引:5,自引:0,他引:5  
We have examined the antioxidant activity of the major phenolic compounds in Broccoli: two flavonol glycosides (quercetin 3-O-sophoroside and kaemp-ferol 3-O-sophoroside) and four hydroxycinnamic acid esters (1,2'-disinapoyl-2-feruloyl gentiobiose, 1-sinapoyl-2-feruloyl gentiobiose, 1,2,2'-trisinapoyl gentiobiose and 1,2-disinapoyl gentiobiose). The Trolox C equivalent antioxidant capacity (TEAC) and inhibition of iron/ascorbate-induced lipid per-oxidation of phosphatidyl choline vesicles were measured. In the aqueous phase TEAC assay, the two flavonol glycosides were less active than their respective aglycones. TEAC values for the hydroxycinnamic acid esters were less than the sum of their constituent hydroxycinnamic acids on a molar basis. Quercetin 3-O-sophoroside was a potent inhibitor of lipid peroxidation, in contrast to kaempferol 3-O-sophoroside. The hydroxycinnamic acid esters were highly effective at preventing lipid damage with the exception of 1,2,2'-trisinapoyl gentiobiose. The six compounds analysed herein demonstrate the antioxidant activity of the major phenolics in broccoli and indicate the effect on antioxidant activity of sugar substitutions in the phenolic B ring.  相似文献   

16.
Excessive peroxidation of biomembranes is thought to contribute to the initiation and progression of numerous degenerative diseases. The present study examined the inhibitory effects of a cocoa extract, individual cocoa flavanols (-)-epicatechin and (+)-catechin, and procyanidin oligomers (dimer to decamer) isolated from cocoa on rat erythrocyte hemolysis. In vitro, the flavanols and the procyanidin oligomers exhibited dose-dependent protection against 2,2'-azo-bis (2-amidinopropane) dihydrochloride (AAPH)-induced erythrocyte hemolysis between concentrations of 2.5 and 40 microM. Dimer, trimer, and tetramer showed the strongest inhibitory effects at 10 microM, 59.4%, 66.2%, 70.9%; 20 microM, 84.1%, 87.6%, 81.0%; and 40 microM, 90.2%, 88.9%, 78.6%, respectively. In a subsequent experiment, male Sprague-Dawley rats (approximately 200 g; n = 5-6) were given a 100-mg intragastric dose of a cocoa extract. Blood was collected over a 4-hr time period. Epicatechin and catechin, and the dimers (-)-epicatechin-(4beta>8)-epicatechin (Dimer B2) and (-)-epicatechin-(4beta>6)-epicatechin (Dimer B5) were detected in the plasma with concentrations of 6.4 microM, and 217.6, 248.2, and 55.4 nM, respectively. Plasma antioxidant capacity (as measured by the total antioxidant potential [TRAP] assay) was elevated (P < 0.05) between 30 and 240 min following the cocoa extract feeding. Erythrocytes obtained from the cocoa extract-fed animals showed an enhanced resistance to hemolysis (P < 0.05). This enhanced resistance was also observed when erythrocytes from animals fed the cocoa extract were mixed with plasma obtained from animals given water only. Conversely, plasma obtained from rats given the cocoa extract improved the resistance of erythrocytes obtained from rats given water only. These results show cocoa flavanols and procyanidins can provide membrane protective effects.  相似文献   

17.
The antioxidant activity of an aqueous extract (infusion) and respective ethyl acetate fraction of Equisetum telmateia Ehrh. (Equisetaceae), a plant used in traditional medicine for its anti-inflammatory and diuretic properties, has been evaluated by DPPH, TEAC and TBARS assays. A high and significant antioxidant activity was detected in the ethyl acetate fraction. Analysis of the aqueous extract and the ethyl acetate fraction by HPLC-PAD-ESI/MS allowed the identification of the major phenolic compounds as flavan-3-ol, kaempferol and phenolic acid derivatives. Among the flavan-3-ols, A-type proanthocyanidins and afzelechin derivatives were detected as well as the more common B-type procyanidins, B2 and C1, whose identification was further confirmed by HPLC using detection involving chemical reaction with p-dimethylamino-cinnamaldehyde. The results suggest that the anti-inflammatory activity of E. telmateia could be due, at least in part, to the presence of compounds with antioxidant activity.  相似文献   

18.
Content of total proanthocyanidins as well as total phenolics, flavonoids, antioxidant activities were evaluated for litchi (Litchi chinensis Sonn.) pulp of 32 cultivars. One cultivar, Hemaoli, showed the highest total proanthocyanidins and total phenolics, and DPPH or ABTS radical scavenging activities. ESI-MS and NMR analysis of the Hemaoli pulp crude extracts (HPCE) showed that procyandins composed of (epi)catechin unites with degree of polymerization (DP) of 2–6 were dominant proanthocyanidins in HPCE. After the HPCE was fractionated by a Sephadex LH-20 column, 32 procyanidins were identified by LC-ESI-Q-TOF-MS in litchi pulp for the first time. Quantification of individual procyanidin in HPCE indicated that epicatechin, procyanidin B2, procyanidin C1 and A-type procyanidin trimer were the main procyanidins. The radical scavenging activities of different fractions of HPCE as well as six procyanidins standards were evaluated by both DPPH and ABTS assays. HPCE fractions showed similar antioxidant activities with those of Vc and six individual procyanidins, the IC50 of which ranged from 1.88 ± 0.01 to 2.82 ± 0.10 μg/ml for DPPH assay, and from 1.52 ± 0.17 to 2.71 ± 0.15 μg/ml for ABTS assay. Such results indicate that litchi cultivars rich in proanthocyanidins are good resources of dietary antioxidants and have the potential to contribute to human health.  相似文献   

19.
Cocoa flavan-3-ols (catechin, epicatechin and oligomeric procyanidins) were tested for their ability to decrease LDL oxidative susceptibility and spare alpha-tocopherol (alpha-toc) in vitro. Physiologic concentration (0.10-0.50 &mgr;M) of flavanols were used. The flavanols increased LDL conjugated diene lag times dose-dependently from 23-207% and 15-143% in response to copper and AAPH oxidation, respectively, and delayed alpha-toc consumption. Sparing of LDL alpha-toc represents a possible mechanism for flavanols to enhance the resistance of plasma and LDL to oxidative stress. Procyanidins decreased LDL oxidative susceptibility with increasing chain length. However, when based on equivalent amounts of monomeric units, they inhibited LDL oxidation to a similar extent. This suggests that antioxidant activity of procyanidins with biologic substrates is not attributable to chain length or charge delocalization through polymeric linkages, but primarily to ring structures and catechol groups. Additionally, human plasma was analyzed for the presence of oligomeric procyanidins following consumption of a flavanol-rich cocoa product. Procyanidin dimers were detected in plasma concordant with the appearance of monomeric flavanols, with a peak of 0.08 +/- 0.01 &mgr;mol/L (n = 6) at two hours after consumption. Thus, this paper confirms the occurrence of procyanidins in human plasma, and extends previous structure-function observations regarding flavanoid protection of LDL.  相似文献   

20.
Free radicals were generated at known rates in the aqueous phase (by means of 2,2'-azobis (2-amidinopropane) dihydrochloride [AAPH]) and in a membranous (lipid) phase (by means of 2,2'-azobis (2,4-dimethylvaleronitrile [AMVN]). A soluble protein (bovine serum albumin: BSA), and membranes of lysed mitochondria containing radioactively labeled monoamine oxidase (MAO), were exposed to the resultant radical fluxes. Antioxidants were added to the system, either in the aqueous phase (Trolox) or in a liposomal membrane phase (alpha-tocopherol). Protein damage was assessed as tryptophan oxidation and conformational changes in tryptophan fluorescence of the soluble protein, BSA, and as fragmentation of both BSA and monoamine oxidase. Radicals generated in the aqueous phase, by AAPH, were effective in damaging BSA and MAO. Radicals generated within the liposome membrane phase (by AMVN) were less effective against BSA than those deriving from AAPH. Liposomal AMVN radicals could damage MAO, present in a separate membranous phase, though again, less effectively than could AAPH-derived radicals. BSA could be protected by Trolox, the aqueous soluble antioxidant, but hardly by tocopherol itself. Damage to MAO was limited by Trolox, and also by the hydrophobic antioxidant, tocopherol. Damaging reactions due to radicals generated in a membrane phase were significantly accelerated when the membrane was peroxidizable (soybean phosphatidylcholine) rather than nonperoxidizable (saturated dimyristoyl phosphatidylcholine). Thus lipid radicals also played some role in protein damage in these systems. BSA was attacked similarly in the presence or absence of liposomes by AAPH. Correspondingly, BSA could inhibit the peroxidation of liposomes induced by AAPH and less efficiently that induced by AMVN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号