共查询到20条相似文献,搜索用时 15 毫秒
1.
Floristic biogeography of the Hawaiian Islands: influences of area, environment and paleogeography 总被引:1,自引:1,他引:1
Jonathan P. Price 《Journal of Biogeography》2004,31(3):487-500
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today. 相似文献
2.
Simone Fattorini 《Journal of Biogeography》2009,36(6):1100-1110
Aim To investigate the biological meaning of equations used to apply the general dynamic model (GDM) of oceanic island biogeography proposed by R. J. Whittaker, K. A. Triantis and R. J. Ladle. Location Analyses are presented for 17 animal groups living on the Aeolian Islands, a volcanic archipelago in the central Mediterranean, near Sicily. Methods In addition to the mathematical implementation of the GDM proposed by Whittaker, Triantis and Ladle, and termed here logATT2 (, where S is species number or any other diversity metric, t is island age, A is island area, and a, b, c and d are fitted parameters), a new implementation based on the Arrhenius equation of the species–area relationship (SAR) is investigated. The new model (termed powerATT2) is: . For logATT2 and powerATT2 models, equations were developed to calculate (1) the expected number of species at equilibrium (i.e. when the island has reached maturity) per unit area (Seq), and (2) the time required to obtain this value (teq). Whereas the intercept in the Gleason model (S = C + z log A) or the coefficient of the Arrhenius power model (S = CAz) of the SAR can be considered measures of the expected number of species per unit area, this is not the case for the parameter a of the ATT2 models. However, values of Seq can be used for this purpose. The index of ‘colonization ability’ (CAB), calculated as the ratio , may provide a measure of the mean number of species added per unit area per unit time. Results Both ATT2 models fitted most of the data well, but the powerATT2 model was in most cases superior. Equilibrial values of species richness (Seq) varied from c. 3 species km?2 (reptiles) to 100 species km?2 (mites). The fitted curves for the powerATT2 model showed large variations in d, from 0.03 to 3. However, most groups had values of d around 0.2–0.4, as commonly observed for the z‐values of SARs modelled by a power function. Equilibration times ranged from about 170,000 years to 400,000 years. Mites and springtails had very high values of CAB, thus adding many more species per unit area per unit time than others. Reptiles and phytophagous scarabs showed very low values, being the groups that added fewest species per unit area per unit time. Main conclusions Values of equilibrial species richness per unit area are influenced by species biology (e.g. body size and ecological specialization). Theoretical and empirical evidence suggests that higher immigration rates should increase the z‐values of the Arrhenius model. Thus, in the same archipelago, groups with larger z‐values should be characterized by higher dispersal ability. Results obtained here for the parameter d conform to this prediction. 相似文献
3.
4.
东南亚是全球生物多样性热点地区和保护优先区域。19世纪中期, 阿尔弗雷德·拉塞尔·华莱士(Alfred Russel Wallace)在马来群岛历经8年的详实野外考察, 根据动物地理分布提出了马来群岛动物区系地理格局。东南亚随之成为生物地理这门学科重要的奠基地之一。尤其是在华莱士线提出后, 逐渐促使东南亚成为生物地理学领域的发源地和前沿热点地区, 吸引并聚焦了众多生物地理学家和生态学家的目光。东南亚独特的地理地貌和丰富的生物多样性在科学界引起了越来越多的关注, 逐年递增的科研文献也在探讨东南亚生物多样性和地理分布格局等问题。探究这一地区的生物地理分布格局有助于深入理解全球生物多样性的起源、演化, 以及对气候和环境变化的响应。本文对东南亚主要的生物地理研究进行了回溯, 并对其存在的问题进行了思考, 主要内容包括: (1)界定了东南亚的生物地理范围及其生物亚区的划分, 即东南亚的生物地理范围包括中南半岛和马来群岛两大区域, 同时东南亚又包括了中南半岛、巽他、菲律宾和华莱士4个生物亚区; (2)东南亚的生物地理分布格局研究表明, 4个生物亚区的生物地理学联系主要是相邻地区的隔离、迁移和扩散; (3)华莱士线以及衍生的生物地理分界线在动物地理分布中有明显的界限, 而在植物地理分布格局中不明显, 其原因主要是动物和植物的迁移扩散能力不同所致; (4)东南亚和澳新古陆的生物地理联系主要是生物区系成分的交换, 这种交换过程在动植物中均存在, 而且这两个地区之间存在相互的区系交换, 既有从东南亚到澳新古陆的成分, 也有从澳新古陆到东南亚的成分。本文系统地总结并讨论了东南亚4个生物亚区及其毗邻地区存在的生物地理分布格局, 并对其存在的科学问题提出一些看法和建议。总之, 我们希望本文能够承前启后、抛砖引玉, 推动东南亚生物地理学研究的蓬勃发展。 相似文献
5.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands. 相似文献
6.
Aim The aim of this study is to explore the interrelationships between island area, species number and habitat diversity in two archipelago areas. Location The study areas, Brunskär and Getskär, are located in an archipelago in south‐western Finland. Methods The study areas, 82 islands in Brunskär and 78 in Getskär, were classified into nine habitat types based on land cover. In the Brunskär area, the flora (351 species) was surveyed separately for each individual habitat on the islands. In the Getskär area, the flora (302 species) was surveyed on a whole‐island basis. We used standard techniques to analyse the species–area relationship on a whole‐island and a habitat level. We also tested our data for the small island effect (SIE) using breakpoint and path analysis models. Results Species richness was significantly associated with both island area and habitat diversity. Vegetated area in particular, defined as island area with the rock habitat subtracted, proved to be a strong predictor of species richness. Species number had a greater association with island area multiplied by the number of habitats than with island area or habitat number separately. The tests for a SIE in the species–area relationship showed the existence of a SIE in one of the island groups. No SIE could be detected for the species–vegetated area relationship in either of the island groups. The strength of the species–area relationship differed considerably between the habitats. Main conclusions The general principles of island biogeography apply well to the 160 islands in this study. Vascular plant diversity for small islands is strongly influenced by physiographic factors. For the small islands with thin and varying soil cover, vegetated area was the most powerful predictor of species richness. The species–area curves of various habitats showed large variations, suggesting that the measurement of habitat areas and establishment of habitat‐based species lists are needed to better understand species richness on islands. We found some evidence of a SIE, but it is debatable whether this is a ‘true’ SIE or a soil cover/habitat characteristics feature. 相似文献
7.
Aim To investigate species compositions, rates of species turnover, species–area and species–distance relationships and patterns of nestedness in the floras of small Bahamian islands, by comparing two groups of islands that had been differentially affected by two hurricanes. Location Small islands occurring on either side of Great Exuma near Georgetown, Bahamas. Methods We surveyed the plant species of 44 small islands over a 5‐year period from 1998 to 2002. Hurricanes Lili and Michelle occurred in 1996 and 2001, respectively; both storms affected small islands on the more exposed south‐west side of Great Exuma to a greater degree than small islands on the more protected north‐east side. A set of 27 islands was surveyed in 1998 and 2002 to evaluate species turnover. Stepwise multiple linear regression analyses and an information‐theoretic approach (the Akaike information criterion) were used to elucidate the importance of area and distance as predictors of plant species number. We compared a piecewise linear regression model with a simple linear regression of species number against area to determine whether a small island effect existed. Nestedness patterns were evaluated by Wilcoxon two‐sample tests to analyse occurrence sequences. Results Species turnover was low in an absolute sense (overall = 0.74% year?1), yet was over three times higher than that documented in a nearby archipelago in the absence of hurricanes. Both vegetated area and distance were important predictor variables for exposed islands but not for protected islands. Some support was found for a small island effect for the exposed islands based on a piecewise linear regression model. Both island groups revealed significant nestedness at the level of the assemblage (both P < 0.001). On exposed islands, 65–79% (depending upon the method of calculation) of all species were significantly nested, but only 47% of all species were significantly nested on protected islands. Main conclusions Overall, these insular floras seem highly resistant to hurricane‐force disturbances. Species turnover was low (< 1% year?1) in an absolute sense, particularly in comparison with rates for other taxa. Higher degrees of nestedness and significant species–area and species–distance relationships for exposed islands indicated stronger patterns of community assembly. It is likely that disturbance is a major structuring force for the exposed islands, although the type of disturbances that mediate these patterns may not be primarily hurricane‐force storms. 相似文献
8.
Farah Ishtiaq Sonya M. Clegg Albert B. Phillimore Richard A. Black Ian P. F. Owens Ben C. Sheldon 《Journal of Biogeography》2010,37(1):120-132
Aim (1) To describe the species–area relationships among communities of Plasmodium and Haemoproteus parasites in different island populations of the same host genus (Aves: Zosterops). (2) To compare distance–decay relationships (turnover) between parasite communities and those with potential avian and dipteran hosts, which differ with respect to their movement and potential to disperse parasite species over large distances. Location Two archipelagos in the south‐west Pacific, Vanuatu and New Caledonia (c. 250 km west of Vanuatu) and its Loyalty Islands, with samples collected from a total of 16 islands of varying sizes (328–16,648 km2). Methods We characterized parasite diversity and distribution via polymerase chain reaction (PCR) from avian (Zosterops) blood samples. Bayesian methods were used to reconstruct the parasite phylogeny. In accordance with recent molecular evidence, we treat distinct mitochondrial DNA lineages as equivalent to species in this study. Path analysis and parasite lineage accumulation curves were used to assess the confounding effect of inadequate sampling on the estimation of parasite richness. Species–area and species–distance relationships were assessed using linear regression: distance–decay relationships were assessed using Mantel tests. Results Birds and mosquito species and Plasmodium lineages exhibited significant species–area relationships. However, Plasmodium lineages showed the weakest ‘species–area’ relationship; no relationship was found for Haemoproteus lineages. Avian species richness influenced parasite lineage richness more than mosquito species richness did. Within individual avian host species, the species–area relationship of parasites showed differing patterns. Path analysis indicated that sampling effort was unlikely to have a confounding effect on parasite richness. Distance from mainland (isolation effect) showed no effect on parasite richness. Community similarity decayed significantly with distance for avifauna, mosquito fauna and Plasmodium lineages but not for Haemoproteus lineages. Main conclusions Plasmodium lineages and mosquito species fit the power‐law model with steeper slopes than found for the avian hosts. The lack of species–distance relationship in parasites suggests that other factors, such as the competence of specific vectors and habitat features, may be more important than distance. The decay in similarity with distance suggests that the sampled Plasmodium lineages and their potential hosts were not randomly distributed, but rather exhibited spatially predictable patterns. We discuss these results in the context of the effects that parasite generality may have on distribution patterns. 相似文献
9.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies). 相似文献
10.
Effects of habitat fragmentation on carabids in forest patches 总被引:12,自引:0,他引:12
11.
The species–area relationship (SAR), describing the increase in species number (S) with increasing area (A), is one of the most robust patterns in ecology with great significance for conservation. The SAR is generally formulated as a power function, S = kAz, although the semilogarithmic form S = a + b log A has often been used by botanists. Here we unite the two forms by deriving SARs from the incidence functions of the species that make up the community. We show how the decisive scaling parameters z and b relate to the properties of individual species, and highlight why the biological interpretation of SARs has been so enigmatic. 相似文献
12.
Maria Panitsa Dimitrios Tzanoudakis Kostas A. Triantis Spyros Sfenthourakis 《Journal of Biogeography》2006,33(7):1223-1234
Aim To investigate the species–area relationship (SAR) of plants on very small islands, to examine the effect of other factors on species richness, and to check for a possible Small Island Effect (SIE). Location The study used data on the floral composition of 86 very small islands (all < 0.050 km2) of the Aegean archipelago (Greece). Methods We used standard techniques for linear and nonlinear regression in order to check several models of the SAR, and stepwise multiple regression to check for the effects of factors other than area on species richness (‘habitat diversity’, elevation, and distance from nearest large island), as well as the performance of the Choros model. We also checked for the SAR of certain taxonomic and ecological plant groups that are of special importance in eastern Mediterranean islands, such as halophytes, therophytes, Leguminosae and Gramineae. We used one‐way anova to check for differences in richness between grazed and non‐grazed islands, and we explored possible effects of nesting seabirds on the islands’ flora. Results Area explained a small percentage of total species richness variance in all cases. The linearized power model of the SAR provided the best fit for the total species list and several subgroups of species, while the semi‐log model provided better fits for grazed islands, grasses and therophytes. None of the nonlinear models explained more variance. The slope of the SAR was very high, mainly due to the contribution of non‐grazed islands. No significant SIE could be detected. The Choros model explained more variance than all SARs, although a large amount of variance of species richness still remained unexplained. Elevation was found to be the only important factor, other than area, to influence species richness. Habitat diversity did not seem important, although there were serious methodological problems in properly defining it, especially for plants. Grazing was an important factor influencing the flora of small islands. Grazed islands were richer than non‐grazed, but the response of their species richness to area was particularly low, indicating decreased floral heterogeneity among islands. We did not detect any important effects of the presence of nesting seabird colonies. Main conclusions Species richness on small islands may behave idiosyncratically, but this does not always lead to a typical SIE. Plants of Aegean islets conform to the classical Arrhenius model of the SAR, a result mainly due to the contribution of non‐grazed islands. At the same time, the factors examined explain a small portion of total variance in species richness, indicating the possible contribution of other, non‐standard factors, or even of stochastic effects. The proper definition of habitat diversity as pertaining to the taxon examined in each case is a recurrent problem in such studies. Nevertheless, the combined effect of area and a proxy for environmental heterogeneity is once again superior to area alone in explaining species richness. 相似文献
13.
Aim We looked at the biogeographical patterns of Oniscidean fauna from the small islands of the Mediterranean Sea in order to investigate the species–area relationship and to test for area‐range effects. Location The Mediterranean Sea. Methods We compiled from the literature a data set of 176 species of Oniscidea (terrestrial isopods) distributed over 124 Mediterranean islands. Jaccard's index was used as input for a UPGMA cluster analysis. The species–area relationship was investigated by applying linear, semi‐logarithmic, logarithmic and sigmoid models. We also investigated a possible ‘small island effect’ (SIE) by performing breakpoint regression. We used a cumulative and a sliding‐window approach to evaluate scale‐dependent area‐range effects on the log S/log A regression parameters. Results Based on similarity indexes, results indicated that small islands of the Mediterranean Sea can be divided into two major groups: eastern and western. In general, islands from eastern archipelagos were linked together at similarity values higher than those observed for western Mediterranean islands. This is consistent with a more even distribution of species in the eastern Mediterranean islands. Separate archipelagos in the western Mediterranean could be discriminated, with the exception of islets, which tended to group together at the lowest similarity values regardless of the archipelago to which they belong. Islets were characterized by a few common species with large ranges. The species–area logarithmic model did not always provide the best fit. Most continental archipelagos showed very similar intercepts, higher than the intercept for the Canary island oceanic archipelago. Sigmoid regression returned convex curves. Evidence for a SIE was found, whereas area‐range effects that are dependent on larger scale analyses were not unambiguously supported. Main conclusions The Oniscidea fauna from small islands of the Mediterranean Sea is highly structured, with major and minor geographical patterns being identifiable. Some but not all of the biogeographical complexity can be explained by interpreting the different shapes of species–area curves. Despite its flexibility, the sigmoid model tested did not always provide the best fit. Moreover, when the model did provide a good fit the curves looked convex, not sigmoid. We found evidence for a SIE, and minor support for scale‐dependent area‐range effects. 相似文献
14.
An index (Ci*E) combining the number of line‐of‐sight islands (Ci) within a radius i and target island elevation (E) has been proposed as an improved predictive model of plant species richness (St) in the Galápagos Archipelago. We examined this index critically and found that several major flaws preclude it from being a useful predictive tool for the archipelago. Although the number of collecting trips to an island was reported over 20 years ago to have substantial predictive value for reported plant species richness in the Galápagos Islands, this relationship was ignored in multiple regression analyses of the index. When we included the number of collecting trips in different multiple regression analyses of the index, Ci*E had less predictive power than collecting trips or ceased to be significant at all. Additionally, the strong significant relationship between elevation and area in the Galápagos Archipelago results in area having a major confounding influence on the Ci*E index. When elevation is removed from the Ci*E index, the predictive power of Ci is far less than area alone. Finally, the data used to construct and correlate the Ci*E index with (St) were based only on a subset of the islands and species lists that were incomplete or out of date. Species richness on islands can be related to the interaction of different factors, so development and testing of indices like Ci*E is not inappropriate. However, it is important to examine the interrelationships among the components of these indices thoroughly, and not ignore the effect of factors already known to have high predictive power. We propose several ways in which more meaningful indices of source pool(s) capacity can be constructed. 相似文献
15.
16.
Islands harbour a significant portion of all plant species worldwide. Their biota are often characterized by narrow distributions and are particularly susceptible to biological invasions and climate change. To date, the global richness pattern of islands is only poorly documented and factors causing differences in species numbers remain controversial. Here, we present the first global analysis of 488 island and 970 mainland floras. We test the relationship between island characteristics (area, isolation, topography, climate and geology) and species richness using traditional and spatial models. Area is the strongest determinant of island species numbers ( R 2 = 0.66) but a weaker predictor for mainlands ( R 2 = 0.25). Multivariate analyses reveal that all investigated variables significantly contribute to insular species richness with area being the strongest followed by isolation, temperature and precipitation with about equally strong effects. Elevation and island geology show relatively weak yet significant effects. Together these variables account for 85% of the global variation in species richness. 相似文献
17.
以粤西黑石顶自然保护区西部船底窝的永久样地为研究对象,在一个面积为1600m2的人工次生裸地样地上,借助地理信息系统(GIS)技术,对各个种群分别用3种不同的样方面积(10m×10m,8m×8m,5m×5m)和不同的测定方法来研究演替初期优势种群的分布格局,从而研究不同的样方面积对测定南亚热带森林群落内种群分布格局的影响。结果表明,在南亚热带森林群落演替初期以8m×8m的样方面积来测定种群分布格局较为有效。同时运用GIS技术作数据处理及图形输出,大大简化了分析过程,提高了分析水平。 相似文献
18.
Aim We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location The Sunda Shelf islands of Southeast Asia.
Methods Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule. 相似文献
Location The Sunda Shelf islands of Southeast Asia.
Methods Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule. 相似文献
19.
Bjarte H. Jordal Roger A. Beaver Lawrence R. Kirkendall 《Global Ecology and Biogeography》2001,10(4):345-357
- 1 Inbreeding and parthenogenesis are especially frequent in colonizing species of plants and animals, and inbreeding in wood‐boring species in the weevil families Scolytinae and Platypodidae is especially common on small islands. In order to study the relationship between colonization success, island attributes and mating system in these beetles, we analysed the relative proportions of inbreeders and outbreeders for 45 Pacific and Old World tropical islands plus two adjacent mainland sites, and scored islands for size, distance from nearest source population, and maximum altitude.
- 2 The numbers of wood‐borer species decreased with decreasing island size, as expected; the degree of isolation and maximum island altitude had negligible effects on total species numbers.
- 3 Numbers of outbreeding species decreased more rapidly with island size than did those of inbreeders. Comparing species with similar ecology (e.g. ambrosia beetles) showed that this difference was best explained by differential success in colonization, rather than by differences in resource utilization or sampling biases. This conclusion was further supported by analyses of data from small islands, which suggested that outbreeding species have a higher degree of endemism and that inbreeding species are generally more widespread.
- 4 Recently established small populations necessarily go through a period of severe inbreeding, which should affect inbreeding species much less than outbreeding ones. In addition, non‐genetic ecological and behavioural (‘Allee’) effects are also expected to reduce the success of outbreeding colonists much more than that of inbreeders: compared with inbreeders, outbreeders are expected to have slower growth rates, have greater difficulties with mate‐location and be vulnerable to random extinction over a longer period.
20.
Jürgen Dengler 《Diversity & distributions》2010,16(2):256-266
Aim The small island effect (SIE), i.e. the hypothesis that species richness below a certain threshold area varies independently of island size, has become a widely accepted part of the theory of island biogeography. However, there are doubts whether the findings of SIEs were based on appropriate methods. The aim of this study was thus to provide a statistically sound methodology for the detection of SIEs and to show this by re‐analysing data in which an SIE has recently been claimed ( Sfenthourakis & Triantis, 2009 , Diversity and Distributions, 15 , 131–140). Location Ninety islands of the Aegean Sea (Greece). Methods First, I reviewed publications on SIEs and evaluated their methodology. Then, I fitted different species–area models to the published data of area (A) and species richness (S) of terrestrial isopods (Oniscidea), with log A as predictor and both S (logarithm function) and log S (power function) as response variables: (i) linear; (ii) quadratic; (iii) cubic; (iv) breakpoint with zero slope to the left (SIE model); (v) breakpoint with zero slope to the right; (vi) two‐slope model. I used non‐linear regression with R2adj., AICc and BIC as goodness‐of‐fit measures. Results Many different methods have been applied for detecting SIEs, all of them with serious shortcomings. Contrary to the claim of the original study, no SIE occurs in this particular dataset as the two‐slope variants performed better than the SIE variants for both the logarithm and power functions. Main conclusions For the unambiguous detection of SIEs, one needs to (i) include islands with no species; (ii) compare all relevant models; and (iii) account for different model complexities. As none of the reviewed SIE studies met all these criteria, their findings are dubious and SIEs may be less common than reported. Thus, conservation‐related predictions based on the assumption of SIEs may be unreliable. 相似文献