首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Displacement of a DNA binding protein by Dda helicase   总被引:3,自引:2,他引:1       下载免费PDF全文
Bacteriophage T4 Dda helicase has recently been shown to be active as a monomer for unwinding of short duplex oligonucleotides and for displacing streptavidin from 3′-biotinylated oligonucleotides. However, its activity for streptavidin displacement and DNA unwinding has been shown to increase as the number of Dda molecules bound to the substrate molecule increases. A substrate was designed to address the ability of Dda to displace DNA binding proteins. A DNA binding site for the Escherichia coli trp repressor was introduced into an oligonucleotide substrate for Dda helicase containing single-stranded overhang. Here we show that a Dda monomer is insufficient to displace the E.coli trp repressor from dsDNA under single turnover conditions, although the substrate is unwound and the repressor displaced when the single-stranded overhang is long enough to accommodate two Dda molecules. The quantity of product formed increases when the substrate is able to accommodate more than two Dda molecules. These results indicate that multiple Dda molecules act to displace DNA binding proteins in a manner that correlates with the DNA unwinding activity and streptavidin displacement activity. We suggest a cooperative inchworm model to describe the activities of Dda helicase.  相似文献   

2.
Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s–1 whereas the rate was 1.34 nM s–1 in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase.  相似文献   

3.
Escherichia coli RecBC, a rapid and processive DNA helicase with only a single ATPase motor (RecB), possesses two distinct single‐stranded DNA (ssDNA) translocase activities that can operate on each strand of an unwound duplex DNA. Using a transient kinetic assay to detect phosphate release, we show that RecBC hydrolyzes the same amount of ATP when translocating along ssDNA using only its primary translocase (0.81 ± 0.05 ATP/nt), only its secondary translocase (1.12 ± 0.06 ATP/nt), or both translocases simultaneously (1.07 ± 0.09 ATP/nt). A mutation within RecB (Y803H) that slows the primary translocation rate of RecBC also slows the secondary translocation rate to the same extent. These results indicate that the ATPase activity of the single RecB motor drives both the primary and secondary RecBC translocases in a tightly coupled reaction. We further show that RecBC also hydrolyzes the same amount of ATP (0.95 ± 0.08 ATP/bp) while processively unwinding duplex DNA, suggesting that the large majority, possibly all, of the ATP hydrolyzed by RecBC during DNA unwinding is used to fuel ssDNA translocation rather than to facilitate base pair melting. A model for DNA unwinding is proposed based on these observations.  相似文献   

4.
The active form of many helicases is oligomeric, possibly because oligomerization provides multiple DNA binding sites needed for unwinding of DNA. In order to understand the mechanism of the bacteriophage T4 Dda helicase, the potential requirement for oligomerization was investigated. Chemical cross-linking and high pressure gel filtration chromatography provided little evidence for the formation of an oligomeric species. The specific activity for ssDNA stimulated ATPase activity was independent of Dda concentration. Dda was mutated to produce an ATPase-deficient protein (K38A Dda) by altering a residue within a conserved, nucleotide binding loop. The helicase activity of K38A Dda was inactivated, although DNA binding properties were similar to Dda. In the presence of limiting DNA substrate, the rate of unwinding by Dda was not changed; however, the amplitude of product formation was reduced in the presence of increasing concentrations of K38A Dda. The reduction was between that expected for a monomeric or dimeric helicase based on simple competition for substrate binding. When unwinding of DNA was measured in the presence of excess DNA substrate, addition of K38A Dda caused no reduction in the observed rate for strand separation. Taken together, these results indicate that oligomerization of Dda is not required for DNA unwinding.  相似文献   

5.
Benzobisthiazole derivatives were identified as novel helicase inhibitors through high throughput screening against purified Staphylococcus aureus (Sa) and Bacillus anthracis (Ba) replicative helicases. Chemical optimization has produced compound 59 with nanomolar potency against the DNA duplex strand unwinding activities of both B. anthracis and S. aureus helicases. Selectivity index (SI = CC50/IC50) values for 59 were greater than 500. Kinetic studies demonstrated that the benzobisthiazole-based bacterial helicase inhibitors act competitively with the DNA substrate. Therefore, benzobisthiazole helicase inhibitors represent a promising new scaffold for evaluation as antibacterial agents.  相似文献   

6.
Lo YH  Liu SW  Sun YJ  Li HW  Hsiao CD 《PloS one》2011,6(12):e29016
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.  相似文献   

7.
Dda, one of three helicases encoded by bacteriophage T4, has been well-characterized biochemically but its biological role remains unclear. It is thought to be involved in origin dependent DNA replication, recombination-dependent replication, anti-recombination, and recombination repair. The Gp32 protein of bacteriophage T4 plays critical roles in DNA replication, recombination, and repair by coordinating protein components of the replication fork and by stabilizing ssDNA. Previous work demonstrated that stimulation of DNA synthesis by Dda helicase appears to require direct Gp32–Dda protein–protein interactions and that Gp32 and Dda form a tight complex in the absence of ssDNA. Here we characterize the effects of Gp32–Dda physical and functional interactions through changes in the duplex DNA unwinding and ATPase activities of Dda helicase in the presence of different variants of Gp32 and different DNA repair and replication intermediate structures. Results show that Gp32–Dda interactions can be enhancing or inhibitory, depending on the Gp32 domain seen by Dda. Protein–protein interactions with Gp32 stimulate the unwinding activity of Dda, an effect associated with increased turnover of ATP, suggesting a higher rate of ATPase-driven translocation. Dda–Gp32 interactions also promote the unwinding of DNA substrates at higher salt concentrations and in the presence of substrate-bound DNA polymerase. Conversely, the formation of Gp32 clusters on ssDNA can inhibit unwinding, suggesting that Gp32–ssDNA formation sterically regulates which portions of replication and recombination intermediates are accessible for processing by Dda helicase. The data suggest a mechanism of replication fork restart in which Gp32 promotes Dda activity in template switching while preventing premature fork progression.  相似文献   

8.
Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding.  相似文献   

9.
BLM, one of the human RecQ helicases, plays a fundamental role in homologous recombination-based error-free DNA repair pathways, which require its translocation and DNA unwinding activities. Although translocation is essential in vivo during DNA repair processes and it provides a framework for more complex activities of helicases, including strand separation and nucleoprotein displacement, its mechanism has not been resolved for any human DNA helicase. Here, we present a quantitative model for the translocation of a monomeric form of BLM along ssDNA. We show that BLM performs translocation at a low adenosine triphosphate (ATP) coupling ratio (1 ATP consumed/1 nucleotide traveled) and moderate processivity (with a mean number of 50 nucleotides traveled in a single run). We also show that the rate-limiting step of the translocation cycle is a transition between two ADP-bound enzyme states. Via opening of the helicase core, this structural change may drive the stepping of BLM along the DNA track by a directed inchworm mechanism. The data also support the conclusion that BLM performs double-stranded DNA unwinding by fully active duplex destabilization.  相似文献   

10.
Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the "pin" that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.  相似文献   

11.
Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications.  相似文献   

12.
The F plasmid TraI protein (DNA helicase I) plays an essential role in conjugative DNA transfer as both a transesterase and a helicase. Previous work has shown that the 192-kDa TraI protein is a highly processive helicase, catalytically separating >850 bp under steady-state conditions. In this report, we examine the kinetic mechanism describing DNA unwinding of TraI. The kinetic step size of TraI was measured under both single turnover and pre-steady-state conditions. The resulting kinetic step-size estimate was approximately 6-8 bp step(-1). TraI can separate double-stranded DNA at a rate of approximately 1100 bp s(-1), similar to the measured unwinding rate of the RecBCD helicase, and appears to dissociate very slowly from the 3' terminus following translocation and strand-separation events. Analyses of pre-steady-state burst amplitudes indicate that TraI can function as a monomer, similar to the bacteriophage T4 helicase, Dda. However, unlike Dda, TraI is a highly processive monomeric helicase, making it unique among the DNA helicases characterized thus far.  相似文献   

13.
Johnson DS  Bai L  Smith BY  Patel SS  Wang MD 《Cell》2007,129(7):1299-1309
Helicases are molecular motors that separate DNA strands for efficient replication of genomes. We probed the kinetics of individual ring-shaped T7 helicase molecules as they unwound double-stranded DNA (dsDNA) or translocated on single-stranded DNA (ssDNA). A distinctive DNA sequence dependence was observed in the unwinding rate that correlated with the local DNA unzipping energy landscape. The unwinding rate increased approximately 10-fold (approaching the ssDNA translocation rate) when a destabilizing force on the DNA fork junction was increased from 5 to 11 pN. These observations reveal a fundamental difference between the mechanisms of ring-shaped and nonring-shaped helicases. The observed force-velocity and sequence dependence are not consistent with a simple passive unwinding model. However, an active unwinding model fully supports the data even though the helicase on its own does not unwind at its optimal rate. This work offers insights into possible ways helicase activity is enhanced by associated proteins.  相似文献   

14.
DNA helicases are motor proteins that play essential roles in DNA replication, repair and recombination. In the replicative hexameric helicase, the fundamental reaction is the unwinding of duplex DNA; however, our understanding of this function remains vague due to insufficient structural information. Here, we report two crystal structures of the DnaB-family replicative helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in the apo-form and bound to single-stranded DNA (ssDNA). The GkDnaC–ssDNA complex structure reveals that three symmetrical basic grooves on the interior surface of the hexamer individually encircle ssDNA. The ssDNA-binding pockets in this structure are directed toward the N-terminal domain collar of the hexameric ring, thus orienting the ssDNA toward the DnaG primase to facilitate the synthesis of short RNA primers. These findings provide insight into the mechanism of ssDNA binding and provide a working model to establish a novel mechanism for DNA translocation at the replication fork.  相似文献   

15.
Helicases are molecular motors that unwind double-stranded DNA or RNA. In addition to unwinding nucleic acids, an important function of these enzymes seems to be the disruption of protein-nucleic acid interactions. Bacteriophage T4 Dda helicase can displace proteins bound to DNA, including streptavidin bound to biotinylated oligonucleotides. We investigated the mechanism of streptavidin displacement by varying the length of the oligonucleotide substrate. We found that a monomeric form of Dda catalyzed streptavidin displacement; however, the activity increased when multiple helicase molecules bound to the biotinylated oligonucleotide. The activity does not result from cooperative binding of Dda to the oligonucleotide. Rather, the increase in activity is a consequence of the directional bias in translocation of individual helicase monomers. Such a bias leads to protein-protein interactions when the lead monomer stalls owing to the presence of the streptavidin block.  相似文献   

16.
SPP1-encoded replicative DNA helicase gene 40 product (G40P) is an essential product for phage replication. Hexameric G40P, in the presence of AMP-PNP, preferentially binds unstructured single-stranded (ss)DNA in a sequence-independent manner. The efficiency of ssDNA binding, nucleotide hydrolysis and the unwinding activity of G40P are affected in a different manner by different nucleotide cofactors. Nuclease protection studies suggest that G40P protects the 5′ tail of a forked molecule, and the duplex region at the junction against exonuclease attack. G40P does not protect the 3′ tail of a forked molecule from exonuclease attack. By using electron microscopy we confirm that the ssDNA transverses the centre of the hexameric ring. Our results show that hexameric G40P DNA helicase encircles the 5′ tail, interacts with the duplex DNA at the ss–double-stranded DNA junction and excludes the 3′ tail of the forked DNA.  相似文献   

17.
A model is proposed for non-hexameric helicases translocating along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA. The translocation of a monomeric helicase along ssDNA in weakly-ssDNA-bound state is driven by the Stokes force that is resulted from the conformational change following the transition of the nucleotide state. The unwinding of dsDNA is resulted mainly from the bending of ssDNA induced by the strong binding force of helicase with dsDNA. The interaction force between ssDNA and helicases in weakly-ssDNA-bound state determines whether monomeric helicases such as PcrA can unwind dsDNA or dimeric helicases such as Rep are required to unwind dsDNA.  相似文献   

18.
DNA helicases are molecular motors that use the energy from NTP hydrolysis to drive the process of duplex DNA strand separation. Here, we measure the translocation and energy coupling efficiency of a replicative DNA helicase from bacteriophage T7 that is a member of a class of helicases that assembles into ring-shaped hexamers. Presteady state kinetics of DNA-stimulated dTTP hydrolysis activity of T7 helicase were measured using a real time assay as a function of ssDNA length, which provided evidence for unidirectional translocation of T7 helicase along ssDNA. Global fitting of the kinetic data provided an average translocation rate of 132 bases per second per hexamer at 18 degrees C. While translocating along ssDNA, T7 helicase hydrolyzes dTTP at a rate of 49 dTTP per second per hexamer, which indicates that the energy from hydrolysis of one dTTP drives unidirectional movement of T7 helicase along two to three bases of ssDNA. One of the features that distinguishes this ring helicase is its processivity, which was determined to be 0.99996, which indicated that T7 helicase travels on an average about 75kb of ssDNA before dissociating. We propose that the ability of T7 helicase to translocate unidirectionally along ssDNA in an efficient manner plays a crucial role in DNA unwinding.  相似文献   

19.
Unwinding of unnatural substrates by a DNA helicase   总被引:6,自引:0,他引:6  
Helicases separate double-stranded DNA into single-stranded DNA intermediates that are required during replication and recombination. These enzymes are believed to transduce free energy available from ATPase activity to unwind the duplex and translocate along the nucleic acid lattice. The nature of enzyme-substrate interactions between helicases and duplex DNA substrates has not been well-defined. Most helicases require a single-stranded DNA overhang adjacent to duplex DNA in order to initiate unwinding. The strand containing the overhang is referred to as the loading strand whereas the complementary strand is referred to as the displaced strand. We have investigated the interactions between a DNA helicase and the DNA substrate by replacing the displaced strand with a nucleic acid mimic, peptide nucleic acid (PNA). PNA is capable of forming duplex structures with DNA according to Watson-Crick base pairing rules, but contains a N-(2-aminoethyl)glycine backbone in place of the deoxyribose phosphates. The PNA-DNA hybrids had higher melting temperatures than their DNA-DNA counterparts. Dda helicase, from bacteriophage T4, was able to unwind the DNA-PNA substrates at similar rates as DNA-DNA substrates. The results indicate that the rate-limiting step for unwinding is relatively insensitive to the chemical nature of the displaced strand and the thermal stability of oligonucleotide substrates.  相似文献   

20.
Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号