首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

We evaluated kDNA PCR/hybridization and quantitative real-time PCR (qPCR) targeting the gene of DNA polymerase of Leishmania infantum for CVL diagnosis and assessment of parasite load in clinical samples obtained invasively and non-invasively.

Methodology/Principal Findings

Eighty naturally infected dogs from an endemic urban area in Brazil were used. Animals were divided into two groups based on the presence or absence of CVL clinical sings. Skin biopsies, bone marrow, blood and conjunctival swabs samples were collected and submitted to L. infantum DNA detection. In addition, anti-Leishmania antibody titers were measured by Immunofluorescence antibody test. The symptomatic dogs had increased titers compared to asymptomatic dogs (P = 0.025). The frequencies of positive results obtained by kDNA PCR/hybridization for asymptomatic and symptomatic dogs, respectively, were as follows: right conjunctiva, 77.5% and 95.0%; left conjunctiva, 75.0% and 87.5%; skin, 45.0% and 75.0%; bone marrow, 50.0% and 77.5%; and blood, 27.5% and 22.5%. In both groups, the parasite load in the skin samples was the highest (P<0.0001). The parasite loads in the conjunctival swab and bone marrow samples were statistically equivalent within each group. The parasite burden in conjunctival swabs was higher in the dogs with clinical signs than in asymptomatic dogs (P = 0.028). This same relationship was also observed in the bone marrow samples (P = 0.002). No differences in amastigotes load in the skin were detected between the groups.

Conclusions

The conjunctival swab is a suitable clinical sample for qualitative molecular diagnosis of CVL. The highest parasite burdens were detected in skin regardless of the presence of VL-associated clinical signs. The qPCR results emphasized the role of dogs, particularly asymptomatic dogs, as reservoirs for CVL because of the high cutaneous parasite loads. These results may help to explain the maintenance of high transmission rates and numbers of CVL cases in endemic urban regions.  相似文献   

2.
Wong CK  Leung KM  Qiu HN  Chow JY  Choi AO  Lam CW 《PloS one》2012,7(1):e29815

Background

IL-31 is a pruritogenic cytokine, and IL-33 is an alarmin for damaging inflammation. They together relate to the pathogenesis of atopic dermatitis (AD). Eosinophil infiltration into the inner dermal compartment is a predominant pathological feature of AD. We herein investigated the in vitro inflammatory effects of IL-31 and IL-33 on the activation of human eosinophils and dermal fibroblasts.

Methodology/Principal Findings

Receptors, adhesion molecules and signaling molecules were assessed by Western blot or flow cytometry. Chemokines and cytokine were quantitated by multiplex assay. Functional IL-31 receptor component IL-31RA, OSMR-β and IL-33 receptor component ST2 were constitutively expressed on the surface of eosinophils. Co-culture of eosinophils and fibroblasts significantly induced pro-inflammatory cytokine IL-6 and AD-related chemokines CXCL1, CXCL10, CCL2 and CCL5. Such inductions were further enhanced with IL-31 and IL-33 stimulation. IL-31 and IL-33 could significantly provoke the release of CXCL8 from eosinophils and fibroblasts, respectively, which was further enhanced upon co-culture. In co-culture, eosinophils and fibroblasts were the main source for the release of CCL5, and IL-6, CXCL1, CXCL8, CXCL10 and CCL2, respectively. Direct interaction between eosinophils and fibroblasts was required for CXCL1, CXCL10, CXCL8 and CCL5 release. Cell surface expression of intercellular adhesion molecule-1 on eosinophils and fibroblasts was up-regulated in co-culture upon IL-31 and IL-33 stimulation. The interaction between eosinophils and fibroblasts under IL-31 and IL-33 stimulation differentially activated extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, nuclear factor-κB and phosphatidylinositol 3-kinase–Akt pathways. Using specific signaling molecule inhibitors, the differential induction of IL-31 and IL-33-mediated release of cytokines and chemokines such as IL-6 and CXCL8 from co-culture should be related to their distinct activation profile of intracellular signaling pathways.

Conclusions/Significance

The above findings suggest a crucial immunopathological role of IL-31 and IL-33 in AD through the activation of eosinophils-fibroblasts interaction via differential intracellular signaling mechanisms.  相似文献   

3.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients.

Methods

We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization.

Results

BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients.

Conclusion

We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.  相似文献   

4.
5.

Background

The bone marrow is considered to be an important storage of parasites in Leishmania-infected dogs, although little is known about cellular genesis in this organ during canine visceral leishmaniasis (CVL).

Methodology/Principal Findings

The aim of the present study was to evaluate changes in erythropoiesis and leucopoiesis in bone marrow aspirates from dogs naturally infected with Leishmania chagasi and presenting different clinical statuses and bone marrow parasite densities. The evolution of CVL from asymptomatic to symptomatic status was accompanied by increasing parasite density in the bone marrow. The impact of bone marrow parasite density on cellularity was similar in dogs at different clinical stages, with animals in the high parasite density group. Erythroid and eosinophilic hypoplasia, proliferation of neutrophilic precursor cells and significant increases in lymphocytes and plasma cell numbers were the major alterations observed. Differential bone marrow cell counts revealed increases in the myeloid:erythroid ratio associated to increased numbers of granulopoietic cells in the different clinical groups compared with non-infected dogs.

Conclusions

Analysis of the data obtained indicated that the assessment of bone marrow constitutes an additional and useful tool by which to elaborate a prognosis for CVL.  相似文献   

6.

Background

COPD patients have increased numbers of macrophages and neutrophils in the lungs. Interleukin-6 (IL-6) trans-signaling via its soluble receptor sIL-6R, governs the influx of innate immune cells to inflammatory foci through regulation of the chemokine CCL3. We hypothesized that there would be enhanced levels of IL-6, sIL-6R and CCL3 in COPD sputum.

Methods

59 COPD patients, 15 HNS and 15 S underwent sputum induction and processing with phosphate buffered saline to obtain supernatants for IL-6, sIL-6R and CCL3 analysis. Cytoslides were produced for differential cell counting and immunocytochemistry (COPD; n = 3) to determine cell type surface expression of the CCL3 receptors CCR5 and CCR1.

Results

COPD patients expressed higher levels (p < 0.05) of sIL-6R and CCL3 compared to controls (sIL-6R medians pg/ml: COPD 166.4 vs S 101.1 vs HNS 96.4; CCL3 medians pg/ml: COPD 117.9 vs S 0 vs HNS 2.7). COPD sIL-6R levels were significantly correlated with sputum neutrophil (r = 0.5, p < 0.0001) and macrophage (r = 0.3, p = 0.01) counts. Immunocytochemical analysis revealed that CCR5 and CCR1 were exclusively expressed on airway macrophages.

Conclusion

Enhanced airway generation of sIL-6R may promote IL-6 trans-signaling in COPD. Associated upregulation of CCL3 may facilitate the recruitment of macrophages into the airways by ligation of CCR1 and CCR5.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0103-4) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

There is a need for novel anti-inflammatory therapies to treat COPD. The liver X receptor (LXR) is a nuclear hormone receptor with anti-inflammatory properties.

Methods

We investigated LXR gene and protein expression levels in alveolar macrophages and whole lung tissue from COPD patients and controls, the effect of LXR activation on the suppression of inflammatory mediators from LPS stimulated COPD alveolar macrophages, and the effect of LXR activation on the induction of genes associated with alternative macrophage polarisation.

Results

The levels of LXR mRNA were significantly increased in whole lung tissue extracts in COPD patients and smokers compared to non-smokers. The expression of LXR protein was significantly increased in small airway epithelium and alveolar epithelium in COPD patients compared to controls. No differences in LXR mRNA and protein levels were observed in alveolar macrophages between patient groups. The LXR agonist GW3965 significantly induced the expression of the LXR dependent genes ABCA1 and ABCG1 in alveolar macrophage cultures. In LPS stimulated alveolar macrophages, GW3965 suppressed the production of CXCL10 and CCL5, whilst stimulating IL-10 production.

Conclusions

GW3965 did not significantly suppress the production of TNFα, IL-1β, or CXCL8. Our major finding is that LXR activation has anti-inflammatory effects on CXC10, CCL5 and IL-10 production from alveolar macrophages.  相似文献   

8.

Background & Aims

CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine.

Methods

Acute inflammation and recovery in wild-type (WT) and CCR9−/− mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level.

Results

CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9−/− mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9−/− colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9−/− animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production.

Conclusions

Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.  相似文献   

9.

Background

Sarcoidosis is a granulomatous inflammatory disease, possibly of infectious aetiology. We aimed to investigate whether the degree of functional polarization of alveolar macrophages (AMs), or Toll-like receptor (TLR) expression, is associated with sarcoidosis or with distinct clinical manifestations of this disease.

Methods

Total BAL cells (cultured four or 24 h in medium, or stimulated 24 h with LPS) from 14 patients and six healthy subjects, sorted AMs from 22 patients (Löfgren''s syndrome n = 11) and 11 healthy subjects, and sorted CD4+ T cells from 26 patients (Löfgren''s syndrome n = 13) and seven healthy subjects, were included. Using real-time PCR, the relative gene expression of IL-10, IL-12p35, IL-12p40, IL-23p19, CCR2, CCR7, iNOS, CXCL10, CXCL11, CXCL16, CCL18, CCL20, CD80, and CD86, and innate immune receptors TLR2, TLR4, and TLR9, was quantified in sorted AMs, and for selected genes in total BAL cells, while IL-17A was quantified in T cells.

Results

We did not find evidence of a difference with regard to alveolar macrophage M1/M2 polarization between sarcoidosis patients and healthy controls. TLR2 gene expression was significantly lower in sorted AMs from patients, particular in Löfgren''s patients. CCL18 gene expression in AMs was significantly higher in patients compared to controls. Additionally, the IL-17A expression was lower in Löfgren''s patients'' CD4+ T cells.

Conclusions

Overall, there was no evidence for alveolar macrophage polarization in sarcoidosis. However, there was a reduced TLR2 mRNA expression in patients with Löfgren''s syndrome, which may be of relevance for macrophage interactions with a postulated sarcoidosis pathogen, and for the characteristics of the ensuing T cell response.  相似文献   

10.

Background

Leprosy is characterized by polar clinical, histologic and immunological presentations. Previous immunologic studies of leprosy polarity were limited by the repertoire of cytokines known at the time.

Methodology

We used a candidate gene approach to measure mRNA levels in skin biopsies from leprosy lesions. mRNA from 24 chemokines and cytokines, and 6 immune cell type markers were measured from 85 Nepalese leprosy subjects. Selected findings were confirmed with immunohistochemistry.

Principal Results

Expression of three soluble mediators (CCL18, CCL17 and IL-10) and one macrophage cell type marker (CD14) was significantly elevated in lepromatous (CCL18, IL-10 and CD14) or tuberculoid (CCL17) lesions. Higher CCL18 protein expression by immunohistochemistry and a trend in increased serum CCL18 in lepromatous lesions was observed. No cytokines were associated with erythema nodosum leprosum or Type I reversal reaction following multiple comparison correction. Hierarchical clustering suggested that CCL18 was correlated with cell markers CD209 and CD14, while neither CCL17 nor CCL18 were highly correlated with classical TH1 and TH2 cytokines.

Conclusions

Our findings suggest that CCL17 and CCL18 dermal expression is associated with leprosy polarity.  相似文献   

11.

Background

The aim of this study was to evaluate the potential use of nasal, oral, and ear swabs for molecular diagnosis of canine visceral leishmaniasis (CVL) in an endemic urban area in Brazil.

Methodology/Principal Findings

Sixty-two naturally infected and ten healthy dogs were enrolled in this study. Bone marrow aspirates, peripheral blood, skin biopsy, and conjunctival, nasal, oral, and ear swabs were collected. All samples, except blood, were submitted to conventional PCR (cPCR) and quantitative real time PCR (qPCR) to detect and quantify Leishmania infantum DNA, respectively. All dogs were submitted to thorough clinical analysis and were included based on a combination of serological (ELISA immunoassay and immunofluorescent antibody test) and parasitological methods. The cPCR positivity obtained from nasal swab samples was 87% (54/62), equivalent to those from other samples (P>0.05). Positive results were obtained for 79% (22/28) in oral swabs and 43% (12/28) in ear swab samples. A significant difference was observed between these data (P = 0.013), and the frequency of positive results from oral swab was equivalent to those from other samples (P>0.05). The use of ear swab samples for cPCR assays is promising because its result was equivalent to skin biopsy data (P>0.05). The qPCR data revealed that parasite loads in mucosal tissues were similar (P>0.05), but significantly lower than the parasite burden observed in bone marrow and skin samples (P<0.05).

Conclusions

Nasal and oral swab samples showed a high potential for the qualitative molecular diagnosis of CVL because their results were equivalent to those observed in samples collected invasively. Considering that mucosae swab collections are painless, noninvasive, fast and practical, the combination of these samples would be useful in massive screening of dogs. This work highlights the potential of practical approaches for molecular diagnosis of CVL and human leishmaniasis infections.  相似文献   

12.

Background

Inflammation plays a key role in the development and progression of diabetic nephropathy (DN). KCa3.1, a calcium activated potassium channel protein, is associated with vascular inflammation, atherogenesis, and proliferation of endothelial cells, macrophages, and fibroblasts. We have previously demonstrated that the KCa3.1 channel is activated by TGF-β1 and blockade of KCa3.1 ameliorates renal fibrotic responses in DN through inhibition of the TGF-β1 pathway. The present study aimed to identify the role of KCa3.1 in the inflammatory responses inherent in DN.

Methods

Human proximal tubular cells (HK2 cells) were exposed to high glucose (HG) in the presence or absence of the KCa3.1 inhibitor TRAM34 for 6 days. The proinflammatory cytokine chemokine (C-C motif) ligand 20 (CCL20) expression was examined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The activity of nuclear factor-κB (NF-κB) was measured by nuclear extraction and electrophoretic mobility shift assay (EMSA). In vivo, the expression of CCL20, the activity of NF-κB and macrophage infiltration (CD68 positive cells) were examined by real-time PCR and/or immunohistochemistry staining in kidneys from diabetic or KCa3.1-/- mice, and in eNOS-/- diabetic mice treated with the KCa3.1 channel inhibitor TRAM34.

Results

In vitro data showed that TRAM34 inhibited CCL20 expression and NF-κB activation induced by HG in HK2 cells. Both mRNA and protein levels of CCL20 significantly decreased in kidneys of diabetic KCa3.1-/- mice compared to diabetic wild type mice. Similarly, TRAM34 reduced CCL20 expression and NF-κB activation in diabetic eNOS-/- mice compared to diabetic controls. Blocking the KCa3.1 channel in both animal models led to a reduction in phosphorylated NF-κB.

Conclusions

Overexpression of CCL20 in human proximal tubular cells is inhibited by blockade of KCa3.1 under diabetic conditions through inhibition of the NF-κB pathway.  相似文献   

13.

Background

Previous findings support the concept that IL-9 may play a significant role in mediating both pro-inflammatory and changes in airway responsiveness that characterizes the atopic asthmatic state. We previously demonstrated that human airway smooth muscle (ASM) cells express a functional IL-9R that mediate CCL11 expression. However, the signaling pathway governing this effect is not well understood.

Methodology/Principal Findings

In this study, we showed that IL-9 mediated CCL11 expression in ASM cells does not rely on STAT6 or STAT5 but on STAT3 pathway. IL-9 induced rapid STAT3 activation in primary ASM cells that was not observed in case of STAT6 or STAT5. STAT3 binding to CCL11 promoter was also observed in vivo upon IL-9 stimulation of ASM cells. Disruption of STAT3 activity with SH2 domain binding inhibitory peptide results in significant reduction of IL-9 mediated CCL11 promoter activity. DN STAT3β over-expression in ASM cells, but not Ser 727 STAT3 or STAT6 DN, abolishes IL-9 mediated CCL11 promoter activity. Finally, STAT3 but not STAT6 silenced ASM cells showed significant reduction in IL-9 mediated CCL11 promoter activity and mRNA expression.

Conclusion/Significance

Taken together, our results indicate that IL-9 mediated CCL11 via STAT3 signalling pathway may play a crucial role in airway inflammatory responses.  相似文献   

14.

Background

Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.

Methods/Results

In duct ligation-induced acute pancreatitis in mice and rats, we found that (a) IL-33 concentration was increased in the pancreas; (b) mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c) plasma histamine and pancreatic substance P concentrations were increased; and (d) pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK) and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α). Also, IL-33 activated ERK in human pancreatic tissue.

Significance

As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation.

Conclusion

IL-33 is induced in acute pancreatitis, activates acinar cell proinflammatory pathways and exacerbates acute pancreatic inflammation.  相似文献   

15.

Background

The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential.

Methods

Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection.

Results

Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs.

Conclusions

Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs.  相似文献   

16.
17.

Background

Recent research has suggested that the Th1 and Th2 chemokine/cytokine axis contributes to the development of chronic hypersensitivity pneumonitis (HP). Acute exacerbations (AE) are significant factors in the prognosis of chronic HP. Little is known, however, about these biomarkers in association with AE in chronic HP patients.

Methods

Fifty-six patients with chronic HP were evaluated, including 14 patients during episodes of AE. Th1 mediators (C-X-C chemokine ligand [CXCL]10 and interferon [IFN]-γ), Th2 mediators (C-C chemokine ligand [CCL]17, interleukin-4, and interleukin-13), and pro-fibrotic mediator (transforming growth factor [TGF]-β) were measured to evaluate the mediators as predictors of AE. C-C chemokine receptor (CCR)4 (receptor for CCL17)-positive lymphocytes were quantified in lung specimens.

Results

Serum CCL17 levels at baseline independently predicted the first episode of AE (HR, 72.0; 95% CI, 5.03-1030.23; p = 0.002). AE was significantly more frequent in the higher-CCL17 group (≥285 pg/ml) than in the lower-CCL17 group (<285 pg/ml) (log-rank test, p = 0.0006; 1-year incidence: higher CCL17 vs. lower CCL17, 14.3% vs. 0.0%). Serum CCL17 levels and CCR4-positive cells during episodes of AE were increased from the baseline (p = 0.01 and 0.031).

Conclusions

Higher serum concentrations of CCL17 at baseline may be predictive of AE in patients with chronic HP, and CCL17 may contribute to the pathology of AE by inducing the accumulation of CCR4-positive lymphocytes in the lungs.  相似文献   

18.
Wang SW  Wu HH  Liu SC  Wang PC  Ou WC  Chou WY  Shen YS  Tang CH 《PloS one》2012,7(4):e35101

Background

Osteosarcoma is characterized by a high malignant and metastatic potential. CCL5 (previously called RANTES) was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. However, the effect of CCL5 on migration activity and integrin expression in human osteosarcoma cells is mostly unknown.

Methodology/Principal Findings

Here we found that CCL5 increased the migration and expression of αvβ3 integrin in human osteosarcoma cells. Stimulation of cells with CCL5 increased CCR5 but not CCR1 and CCR3 expression. CCR5 mAb, inhibitor, and siRNA reduced the CCL5-enhanced the migration and integrin up-regulation of osteosarcoma cells. Activations of MEK, ERK, and NF-κB pathways after CCL5 treatment were demonstrated, and CCL5-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK, and NF-κB cascades. In addition, over-expression of CCL5 shRNA inhibited the migratory ability and integrin expression in osteosarcoma cells.

Conclusions/Significance

CCL5 and CCR5 interaction acts through MEK, ERK, which in turn activates NF-κB, resulting in the activations of αvβ3 integrin and contributing the migration of human osteosarcoma cells.  相似文献   

19.

Background

Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium.

Methods and Results

Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes.

Conclusions

Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.  相似文献   

20.

Background

CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload.

Methods and Results

Our main findings were: (i) Serum levels of CCL21 were markedly raised in patients with symptomatic aortic stenosis (AS, n = 136) as compared with healthy controls (n = 20). (ii) A CCL21 level in the highest tertile was independently associated with all-cause mortality in these patients. (iii) Immunostaining suggested the presence of CCR7 on macrophages, endothelial cells and fibroblasts within calcified human aortic valves. (iv). Mice exposed to LV pressure overload showed enhanced myocardial expression of CCL21 and CCR7 mRNA, and increased CCL21 protein levels. (v) CCR7−/− mice subjected to three weeks of LV pressure overload had similar heart weights compared to wild type mice, but increased LV dilatation and reduced wall thickness.

Conclusions

Our studies, combining experiments in clinical and experimental LV pressure overload, suggest that CCL21/CCR7 interactions might be involved in the response to pressure overload secondary to AS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号