首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an α-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa 3-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 °C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A1 and myxothiazol, which are inhibitors of mitochondrial bc 1 complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

2.
A soluble cytochrome, cytochrome c-551 was purified from an aerobic photosynthetic bacterium Erythrobacter species strain OCh 114 (ATCC No. 33942) by ammonium sulfate fractionation, ion-exchange chromatography and gel-filtration. The cytochrome had absorption maxima at 277, 410, and 524–525 nm in the oxidized form, and at 415, 522, and 550.5 nm in the reduced form. At 77 K, the -band of the absorption spectrum of the reduced form split in two at 547 and 549 nm. The millimolar absorption coefficient at 550.5 nm was 26.8 mM-1 cm-1 in the reduced form. This cytochrome was an acidic protein with an isoelectric point of 4.9. Its molecular weight was determined to be 15,000 by gel-filtration on Sephadex G-100 and 14,500 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The midpoint potential of this cytochrome was +250 mV at pH 7.0. This cytochrome did not bind CO.  相似文献   

3.
Three c-type cytochromes were purified from the filamentous sulfur-oxidizing bacterium, Beggiatoa alba strain B18LD, by ammonium sulfate fractionation, flat bed isoelectric focusing and gel filtration. Two of the cytochromes; flavocytochrome c-554 and cytochrome c, were similar to cytochromes found in anoxygenic photosynthetic bacteria. Flavocytochrome c-554 had an apparent molecular weight of 21,000, an isoelectric focusing point at pH 4.4, contained FMN as the flavin component and had absorption maxima at 410, 450 and 470 nm in the oxidized form and at 417, 523 and 554 nm in the dithionite-reduced from. Cytochrome c was also an acidic protein with a pI of 4.8 and an apparent molecular weight of 18,000. The absorption spectra maxima were at 400, 490 and 635 nm in the oxidized form, at 424 and 550 nm in the dithione-reduced form and at 415 and 555 nm in the dithionite-reduced plus CO form. The third cytochrome characterized, cytochrome c-553 had an apparent molecular weight of 13,000, an isoelectric point at pH 4.4 and showed absorption maxima at 411 nm in the oxidized form and at 418, 523 and 553 nm in the dithionite-reduced form. Cytochrome c-553 was also isolated as a complex with a non-heme protein with a molecular weight of 16,000. The non-heme protein altered the absorption spectra and isoelectric point of cytochrome c-553.Abbreviations IEF isoelectric focusing - M r molecular weight - pI isoelectric point  相似文献   

4.
Absorption spectra of highly purified liver microsomal cytochrome P-450 in non-equilibrium states were obtained at 77 K by reduction with trapped electrons, formed by gamma-irradiation of the water-glycerol matrix. In contrast to the equilibrium form of ferrous cytochrome P-450 with the heme iron in the high-spin state the non-equilibrium ferrous state has a low-spin heme iron. The absorption spectrum of the non-equilibrium ferrous cytochrome P-450 is characterized by two bands at 564 (-band) and 530 nm (-band). When the temperature is increased to about 278 K this non-equilibrium form of the reduced enzyme is relaxed to the corresponding equilibrium form with a single absorption band at 548 nm in the visible region characteristic for a high-spin heme iron.  相似文献   

5.
The reaction between membrane-bound cytochrome c and the reaction center bacteriochlorophyll g dimer P798 was studied in the whole cells and isolated membranes of Heliobacterium gestii. In the whole cells, the flash-oxidized P798+ was rereduced in multiple exponential phases with half times (t 1/2s) of 10 s, 300 s and 4 ms in relative amplitudes of 40, 35 and 25%, respectively. The faster two phases were in parallel with the oxidation of cytochrome c. In isolated membranes, a significantly slow oxidation of the membrane-bound cytochrome c was detected with t 1/2 = 3 ms. This slow rate, however, again became faster with the addition of Mg2+. The rate showed a high temperature dependency giving apparent activation energies of 88.2 and 58.9 kJ/mol in the whole cells and isolated membranes, respectively. Therefore, membrane-bound cytochrome c donates electrons to the P798+ in a collisional reaction mode like the reaction of water-soluble proteins. The rereduction of the oxidized cytochrome c was suppressed by the addition of stigmatellin both in the whole cells and isolated membranes. This indicates that the electron transfer from the cytochrome bc complex to the photooxidized P798+ is mediated by the membrane-bound cytochrome c. The multiple flash excitation study showed that 2–3 hemes c were connected to the P798. By the heme staining after the SDS-PAGE analysis of the membraneous proteins, two cytochromes c were detected on the gel indicating apparent molecular masses of 17 and 30 kDa, respectively. The situation resembles the case in green sulfur bacteria, that is, the membrane-bound cyotochrome c z couples electron transfer between the cytochrome bc complex and the P840 reaction center complex.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
The bc 1-complex (EC 1.10.2.2.) from Triticum aestivum L. was purified by cytochrome-c affinity chromatography and gel filtration using either etiolated seedlings or wheat-germ extract as starting material. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the isolated enzyme revealed ten bands, which were analysed by immunoblotting and direct amino-acid sequencing. The enzyme from wheat is the first bc 1-complex that is reported to contain four core proteins (55.5, 55.0, 51.5 and 51.0 kDa). In addition, the wheat bc 1-complex comprises cytochrome b (35 kDa), cytochrome c 1 (33 kDa) the Rieske iron-sulphur protein (25 kDa) and three small subunits < 15 kDa. This composition differs from the one reported in fungi, mammals and potato. Partial sequence determination of the large subunits suggests that the 55.5 and 55.0-kDa-proteins represent the -subunit of the general mitochondrial processing peptidase, and the 51.5 and 51.0-kDa proteins the -subunit of this enzyme. The bc 1-complex from wheat efficiently processes mitochondrial precursor proteins as shown in an in-vitro processing assay. In control experiments the isolated bc 1-complexes from potato, yeast, Neurospora and beef, all purified by the same isolation procedure, were also tested for processing activity. Only the protein complexes from plants contain the general mitochondrial processing peptidase. The composition of the wheat bc 1-complex sheds new light on the co-evolution of the processing peptidase and the middle segment of the respiratory chain.Abbreviations MPP mitochondrial processing peptidase We wish to thank Prof. G. Schatz, Biozentrum Basel, Switzerland and Prof. H. Weiss, Universität Düsseldorf, Germany for providing antibodies against the repiratory subunits of the bc 1-complex from yeast and Neurospora and to H. Mentzel, A. Leisse, R. Breitfeld and B. Hidde for excellent technical assistance. Thanks are also due to Prof. M. Boutry, Université de Louvaine-la-Neuve, Belgium for providing a plasmid containing the -subunit of ATPase from tobacco. This research was supported by the Deutsche Forschungsgemeinschalft and the Bundesministerium für Forschung und Technologie.  相似文献   

7.
When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of Spirillum strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 mol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.Abbreviations DNRA dissimilatory nitrate reduction to ammonia - EPR electron paramagnetic resonance - PAGE polyacrylamide gel electrophoresis - NaPi sodium phosphate - SDS sodium dodecylsulfate  相似文献   

8.
The mitochondrial cytochrome bc 1 complex is a multifunctional membrane protein complex. Itcatalyzes electron transfer, proton translocation, peptide processing, and superoxide generation.Crystal structure data at 2.9 Å resolution not only establishes the location of the redox centersand inhibitor binding sites, but also suggests a movement of the head domain of the iron–sulfurprotein (ISP) during bc 1 catalysis and inhibition of peptide-processing activity during complexmaturation. The functional importance of the movement of extramembrane (head) domain ofISP in the bc 1 complex is confirmed by analysis of the Rhodobacter sphaeroides bc 1 complexmutants with increased rigidity in the ISP neck and by the determination of rate constants foracid/base-induced intramolecular electron transfer between [2Fe–2S] and heme c 1 in nativeand inhibitor-loaded beef complexes. The peptide-processing activity is activated in bovineheart mitochondrial bc 1 complex by nonionic detergent at concentrations that inactivate electrontransfer activity. This peptide-processing activity is shown to be associated with subunits Iand II by cloning, overexpression and in vitro reconstitution. The superoxide-generation siteof the cytochrome bc 1 complex is located at reduced b L and Q. The reaction is membranepotential-, and cytochrome c-dependent.  相似文献   

9.
Summary Bacillus halodenitrificans produced a dimeric, manganese-containing superoxide dismutase constitutively when grown either aerobically or as a denitrifier. The molecular mass of the enzyme was determined by sedimentation equilibrium to be 41.4±3 kDa with each subunit estimated at 26 kDa. Plasma emission spectroscopy indicated the presence of 1.22 mol manganese atoms/mol holoenzyme. The electronic absorption spectrum displayed a broad band centered at approximately 474 nm (=560 mM–1 · cm–1) and a shoulder at 595 nm. In the ultraviolet range, the spectrum exhibited split maxima at 278 nm and 283 nm and a shoulder at 291 nm, thus resembling the spectra of superoxide dismutase fromBacillus subtilis andEscherichia coli. The amino acid composition of theB. halodenitrificans enzyme differed slightly quantitatively but little qualitatively from counterpart enzymes from other sources. Like the superoxide dismutases ofMycobacterium lepraemurium and human mitochondria, theB. halodenitrificans enzyme exhibited several cysteine residues. As expected from the capacity superoxide dismutase exhibits for protecting NO as neutrophil cytotoxicity factor, theB. halodenitrificans superoxide dismutase did not interfere with accumulation of NO produced by the organism's nitrite reductase.  相似文献   

10.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

11.
Reduction of cytochromes in chlorosome-free membranes of Chlorobia was studied anaerobically, with an LED array spectrophotometer. For Chlorobium tepidum these membranes contained 0.2 moles cytochrome per mole of bacteriochlorophyll a. The observed change upon complete reduction of oxidized membranes with dithionite could be satisfactorily fitted with three cytochrome components having absorption peaks at 553 (cyt c), 558 and 563 nm (cyt b), in relative amounts of 5:1:2. About 20% of total cytochrome 553 were reducible by ascorbate. Menaquinol reduced all of the 553-component, and this reduction was sensitive to stigmatellin, NQNO and antimycin A. The reduction was insensitive to KCN. However, it was transient at low concentrations of menaquinol in the absence of KCN, but permanent in its presence, demonstrating that electron transport into an oxidation pool was blocked. The 563-component was only slightly reduced by menaquinol unless NQNO or antimycin were present. The stimulation of cytochrome 563-reduction by these inhibitors was more pronounced in the presence of ferricyanide. This phenomenon reflects oxidant-induced reduction of cytochrome b and demonstrates that a Q-cycle is operative in Chlorobia. Also, sulfide fully reduced cytochrome 553, but more slowly than menaquinol. KCN inhibited in this case, as did stigmatellin, NQNO and antimycin A. NQNO was a better inhibitor than antimycin A. Cytochrome 563 again was hardly reduced unless antimycin A was added. The effect was more difficult to observe with NQNO. This supports the conclusion that sulfide oxidation proceeds via the quinone pool and the cytochrome bc-complex in green sulfur bacteria.Abbreviations BChl bacteriochlorophyll - cyt cytochrome - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - SQR sulfide-quinone reductase Dedicated to Prof. Dr. Aloys Wild on occasion of his 65th birthday.  相似文献   

12.
Biogenesis of the purple membrane of Halobacterium halobium   总被引:1,自引:0,他引:1  
A protein closely resembling the purple membrane protein pre-exists in the cell membrane of H. halobium prior to the appearance of functional bacteriorhodopsin. It is associated with a differentiated membranous structure which has been isolated on a sucrose gradient and appears to be a precursor of the purple membrane. The identity of the precursor protein as a form of the purple membrane protein was established in different ways: (1) The cell proteins were labelled in vivo with 14C-proline during dark aerobic growth, the label was chased, and the cells transferred to the illuminated near-anaerobic conditions under which purple membrane is optimally synthesised (induction conditions). Cell lysates were fractionated on sucrose gradients at different times after induction. Label first found in the precursor fraction appeared within 24 h in the purple membrane fraction. (2) SDS-urea-acrylamide gel electrophoresis of the purple membrane protein and the precursor showed only one protein band whose migration coincided with that of the purple membrane band. (3) The amino-acid analysis of the purified precursor was very similar to that of the purple membrane.The absorption spectrum of the precursor showed little of the characteristic absorption of bacteriorhodopsin at 570 nm. A major band appears at 412 nm, the exact nature of which is not known. The difference spectrum (reduced versus oxidised) of a purified fraction showed only traces of cytochrome. Thin-layer chromatography of an acetone-soluble lipid extract indicated the presence of retinal and -carotene. Cells grown in the presence of nicotine did not develop purple membrane after induction: the species absorbing at 412 nm was much less abundant than in non-inhibited cells, but a new fraction was present with a sharp peak at 345 nm consisting mainly of lycopene.Abbreviations CTAB cetyltrimethyl ammonium bromide - SDS sodium dodecyl sulfate - CAP chloramphenicol - TLC thin layer chromatography - CD circular dichroism  相似文献   

13.
A c-type monohaem, cytochrome c6was isolated from a soluble extract of the green alga Chlorella fusca. The isolated protein shows an apparent molecular mass of 10 kDa by SDS-PAGE, but behaves as a dimer of 20.3 kDa in gel-filtration; the isoelectric point is 3.6. The N-terminal sequence shows high identity with other green algae cytochromes c6. The mid-point redox potential is about +350 mV between pH 5 and 9. The ferric and ferrous forms, and their pH equilibria, have been studied using visible, CD and EPR spectroscopies. The visible spectrum of the reduced cytochrome c6is typical of a c-type haem protein, with maxima at 274 nm, 318 nm (-peak), 416 nm (-peak), 522 nm (-peak), 552–553 nm (-peak). A 690 nm band, characteristic of a haem Met-His axial coordination of the haem group, is present in the oxidized form. At high pH values ( 8), cytochrome c6undergoes an alkaline transition, with a pKa of 8.7. Between pH 3 and 9 the EPR spectrum is dominated by two rhombic species, with g-values at 3.32, 2.05, 1.05 and 2.96, 2.30, 1.43, which interconvert with a pKaof 4. CD spectrum of Chlorella fusca cytochrome c6shows that the proteins must be mainly built up by -helices. Even though there are similarities between Chlorella fusca cytochrome c6and that isolated from Monoraphidium braunii, no cross-reactivity with the antibodies raised against the Chlorella fusca cytochrome has been detected for the protein from Monoraphidium braunii.  相似文献   

14.
The organisation and function of electron transport pathways in Paracoccus denitrificans has been studied with both inhibitors and electrode probes for O2 or N2O respiration and membrane potential. Myxothiazol completely inhibits electron flow through the cytochrome bc1 region of the electron transport chain, as judged by its effect on nitrous oxide respiration. Electron flow to oxygen via the cytochrome o oxidase was shown to be insensitive to myxothiazol in a mutant, HUUG 25, that lacks cytochrome c and in which the aa3 oxidase is therefore inactive. Myxothiazol did not inhibit nitrate reduction. It is concluded that myxothiazol is a specific inhibitor of electron flow through the cytochrome bc1 region and more potent than antimycin which does not give complete inhibition.As neither antimycin nor myxothiazol, nor a combination of the two, inhibits electron transport to either nitrate reductase or cytochrome o it is concluded that electron transport pathways to these enzymes do not involve the cytochrome bc1 region but rather branch at the level of ubiquinone. Although the cytochrome o pathway branches at ubiquinone, it is associated with the generation of a protonmotive force; this is shown by measurements of membrane potential in vesicle preparations from the mutant HUUG 25.In contrast to antimycin and myxothiazol, the ubiquinone analogues 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-undecyl-3-hydroxy-1,4-naphthoquinone (UHNQ) inhibit electron flow through both the cytochrome bc1 complex and the cytochrome o pathway, although a higher titre is required in the latter case. These two inhibitors were without effect on the nitrate reductase pathway. Thus myxothiazol is the inhibitor of choice for selective and complete inhibition of cytochrome bc1.Recently published schemes for electron transport in P. denitrificans are analysed.Non standard abbreviations S-13 2,5-dichloro-3-t-butyl-4-nitrososalicylanilide - UHNQ 2-n-undecyl-3-hydroxy-1,4-naphthoquinone - UHDBT 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole  相似文献   

15.
Bernard J. Nebel 《Planta》1968,81(3):287-302
Summary Protonemata of Physcomitrium were grown in a sucrose-mineral nutrient, liquid medium. Even in this medium containing organic nutrient, the growth rate of lateral branch, chloronemal filaments showed a light dependence which was linear with log intensity. Intensities necessary to give a constant growth rate (45 /1.75 hrs.) were determined at selected wavelengths. The resulting action spectrum paralleled the in-vivo absorption spectrum of a single filament in the red region, showing a major peak at 680 nm. Growth rate and absorption approached zero in the far-red (730 nm). However, significant growth activity occurred at 365–400 nm where absorption was low, and negligible growth was found at 440–500 nm where absorption was high.The action spectrum for the positive, directional photo-orientation of growth was determined by the null-point method in which the effectiveness of each selected wavelength was compared to a 665-nm standard in simultaneous, bilateral irradiation. In contrast to growth, the major peak of phototropic activity was found at 730 nm with significant activity extending to 800 nm. A minor peak was at 680 nm. There was some activity in near ultraviolet but not at longer blue wavelengths.It is concluded that the blue-absorbing system responsible for phototropism in virtually all other groups of plants is inactive or absent in Physcomitrium. Instead growth and orientation seem to be dependent upon an interaction between the photosynthetic and phytochrome systems. Further, the data suggest that the physiological activity of phytochrome in photo-orientation of growth does not derive from a certain amount of Pfr or Pfr/Pr ratio but rather it derives from the simultaneous excitation and consequent cycling of Pr and Pfr.Published with the approval of the Secretary of the Smithsonian Institution.This work was carried out under partial support by the U.S. Atomic Energy Commission under Contract AT(30-1)2373.  相似文献   

16.
Trichosporon cutaneum metabolizes glucose purely oxidatively and cytochrome P450 was not detected in the reduced CO-difference spectrum of whole cells. However, in the isolated microsomal fraction the corresponding monooxygenase was present as shown by the appearence of cytochrome P450, NADPH-cytochrome c (P450) reductase and cytochrome b5. The absorption maximum of the terminal oxidase in the reduced CO-difference spectrum shifted between 447 and 448 nm. Derepression of biosynthesis of all components was achieved by transition of the cells from carbon- to oxygen-limited growth in continuous culture. The monooxygenase exhibited aminopyrine demethylation activity but not -hydroxylation activity of lauric acid. With respect to the growth limiting nutrient (carbon and oxygen respectively), mitochondrial cytochrome content showed an analogous behavior as cytochrome P450 and cytochrome b5.  相似文献   

17.
Cytochrome with an-band absorption maximum at 556 nm (77K) in the reduced minus oxidized spectrum is observed in membrnes fromEscherichia coli grown aerobically on most carbon sources. Previous work has suggested that this adsorption peak is due to cytochromeb 556 of succinate dehydrogenase and to cytochromeo. We show here, by partial purification of the membrane cytochromes, that at least two other cytochromes with absorption maxima at 556 nm contribute to this peak. One of these cytochromes is associated with growth ondl-lactate. The other is formed under conditions of low aeration and has hydroperoxidase activity.  相似文献   

18.
R. Grill  C. J. P. Spruit 《Planta》1972,108(3):203-213
Summary Addition of water to dry seeds of Pinus spp. increased the detectable phytochrome immediately and the level reached after 2 h in darkness was retained for at least 20 h at 20° C. The in-vivo difference spectra of phytochrome in Pinus seeds showed absorption maxima at approximately 656 nm and at 710 nm to 715 nm. An isosbestic point was observed at about 680 nm. Shifts towards longer wavebands were obtained especially with tissue containing substantial amounts of chlorophyll and are, therefore, not due to diverse types of phytochrome. Embryo tissue of Ginkgo biloba showed also a maximum in R at 655 nm but the peak in FR occurred at a longer wavelength, 725 nm. This was confirmed by determining action spectra for the phototransformations PrPfr.The dark reactions of phytochrome in Pinus differed from those in Ginkgo. Following a short exposure to R light, the total quantity of photoreversible pigment in Pinus seeds remained constant for several hours in darkness at room temperature. Dark reversion of Pfr occurred extremely rapidly and tPfr 50 was only 0.3 h. In Ginkgo embryos total phytochrome in darkness following a brief exposure to R light was not completely stable. Reversion of Pfr was much slower and tPfr 50 was slightly less than 2 h.It is concluded that, at least as regards the spectral qualities, the phytochrome in Gymnospermae differs from that of Angiospermae and is apparently also not identical in Coniferae and Ginkgoinae. Abbreviations. R = red; FR = far-red; R/FR ratio = (A) red max./(A) far-red max. of difference spectrum. The peak positions and the isosbestic point are estimated from the difference spectra and are approximate only. Pr = red-absorbing form of phytochrome, Pfr = far-red absorbing formThis work was carried out with financial support from the Netherlands Organisation for Pure Scientific Research (Z.W.O.).312th Communication.  相似文献   

19.
Extinction coefficients for cytochrome b and c1 in the isolated cytochrome bc1 complex from Rhodopseudomonas sphaeroides GA have been determined. They are 25 mM?1.cm?1 at 561 nm for cytochrome b and 17.4 mM?1.cm?1 at 553 nM for cytochrome c1 for the difference between the reduced and the oxidized state. Cytochrome b is present in two forms in the complex. One form has an Em7 of 50 mV, an α-peak of 557 nm at liquid N2 temperature and of 561 nm at RT, which is red-shifted by antimycin A. The other form has an Em7 of ?90 mV, a double α-peak of 555 and 561 nm at liquid N2 temperature corresponding to 559 and 566 nm at RT. The absorption at 566 nm is red-shifted by myxothiazol. The two shifts are independent of each other. Both midpoint potentials of cytochromes b are pH-dependent. The redox center compositions of the cytochrome bc1 complexes from Rhodopseudomonas sphaeroides and from mitochondria are identical.  相似文献   

20.
A CO-binding hemoprotein was purified from Tetrahymena pyriformis and some of its properties were studied.

The hemoprotein possessed protoheme, its molecular weight was about 11,000, and its isoelectric point was at pH 8.2. The oxidized form of the hemoprotein showed the Soret band at 406 nm and had no distinct peaks in the region of α- and β-bands, while the reduced form showed the peaks at 426, 527 and 560 nm. The hemoprotein reacted with CO resulting in shift of the Soret band from 426 to 420 nm. The CO-compound showed a broad band from 537 to 573 nm. The hemoprotein was not autoxidizable or oxygenated either. It did not show either of the cytochrome oxidase, peroxidase and NADH oxidase activities.

It should be carefully determined whether or not cytochrome o is functioning as the terminal oxidase in T. pyriformis, as the CO-binding hemoprotein which does not react with molecular oxygen exists in the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号