首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene coding for the endo--1,3-1,4-glucanase of B. circulans ATCC21367 was cloned into Escherichia coli. The cloned enzyme hydrolyzed lichenan or barley -glucan to produce 3-O--cellobiosyl-d-glucose as a main product but was inactive with carboxymethyl cellulose, laminarin and xylan. The enzyme, M r=28 kDa, remained within the cytoplasm of E. coli. A 771 bp open reading frame was in the 2 kb PstI fragment of the recombinant plasmid pLL200K. The deduced protein sequence consists of 257 amino acids and has a putative signal peptide of 26 amino acids. The amino acid sequence of the endo--1,3-1,4-glucanase showed 68 and 51% homology to previously reported endo--1,3-1,4-glucanases from Bacillus strain N-137 and B. brevis, respectively.  相似文献   

2.
The gene encoding endo--1,4-glucanase inBacillus subtilis CK-2 was cloned intoEscherichia coli DH5, and the nucleotide sequence determined. The 1500 bp gene encodes a protein of 499 amino-acid residues with a calculated molecular mass of 55 261, and is equipped with a typicalB. subtilis signal peptide. Nucleotide sequence comparison revealed only 2 basepairs deviation between this gene and the endo--1,4-glucanase gene ofB. subtilis PAP115, and 93% to 95% homology was found between the amino acid sequences of these enzymes and otherB. subtilis endo--1,4-glucanases. Regions of similarity were also observed between the carboxy-terminal part of these enzymes and the part of theB. lautus PL236celA enzyme constituting the cellulose-binding domain.  相似文献   

3.
The expression of the bacterial gene for thermostable -1,3-glucanase in transgenic tobacco plants was shown to induce substantial changes in plant morphogenetic potential, whereas the expression of -1,3; 1,4-glucanase did not affect essentially plant morphogenesis. Our results permit the suggestion that the expression of bacterial -1,3-glucanase in plants elevated the level of endogenous auxin.  相似文献   

4.
The production of antimicrobial phytoalexins is one of the best-known inducible defence responses following microbial infection of plants or treatment with elicitors. In the legume soybean (Glycine max L.), 1,3-1,6--glucans derived from the fungal pathogen Phytophthora sojae have been identified as potent elicitors of the synthesis of the phytoalexin, glyceollin. Recently it has been reported that during symbiotic interaction between soybean and the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110 the bacteria synthesize cyclic 1,3-1,6--glucans. Here we demonstrate that both the fungal and the bacterial -glucans are ligands of -glucan-binding sites which are putative receptors for the elicitor signal compounds in soybean roots. Whereas the fungal -glucans stimulate phytoalexin synthesis at low concentrations, the bacterial cyclic 1,3-1,6--glucans appear to be inactive even at relatively high concentrations. Competition studies indicate that increasing concentrations of the bacterial 1,3-1,6--glucans progressively inhibit stimulation of phytoalexin synthesis in a bioassay induced by the fungal 1,3-1,6--glucans. Another type of cyclic -glucan, a 1,2--glucan from Rhizobium meliloti, that does not nodulate on soybean, seems to be inactive as elicitor and as ligand of the -glucan-binding sites. These results may indicate a novel mechanism for a successful plant-symbiont interaction by suppressing the plant's defence response.Abbreviations HG-APEA 1-[2-(4-aminophenyl)ethyl]amino-l-[hexaglucosyl]deoxyglucitol - HG-AzPEA l-[2-(4-azidophenyl)-ethyl]amino-l-[hexaglucosyl]deoxyglucitol - IC50 concentration for half-maximal displacement We thank Ines Arlt for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 369), the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Fonds der Chemischen Industrie (J.E.), and USDA CSRS NRI Competitive Research grant 93373059233 (A.A.B.).  相似文献   

5.
-glucanases are prominent proteins in pea endocarp tissue responding to fungal infection. We have cloned and sequenced a partial pea cDNA clone, pPIG312, corresponding to a -1,3-glucanase in pea pods challenged with the incompatible pathogen Fusarium solani f. sp. phaseoli. The insert from the partial pea cDNA was used to probe a genomic library derived from pea leaves of the same cultivar. One of the genomic clones, pPIG4-3, contained the complete coding sequence for a mature -1,3-glucanase protein. The predicted amino acid sequence of the pea -1,3-glucanase has 78% identity to bean -1,3-glucanase, 62% and 60% to two tobacco -1,3-glucanases, 57% to soybean -1,3-glucanase, 51% to barley -1,3-glucanase, and 48% to barley -1,3-1,4-glucanase. Genomic Southern analysis indicates that the pea genome contains only one -1,3-glucanase gene corresponding to the probe used in this study. Accumulation of -1,3-glucanase mRNA homologous with the pPIG312 probe was detected in pea pods within 4 to 8 h after challenge with F. solani f. sp. phaseoli, f. sp. pisi, a compatible strain, or the elicitor, chitosan. In the incompatible reaction, mRNA accumulation remained high for 48h, whereas it rapidly decreased in the compatible reaction. After fungal inoculation of whole pea seedlings, the enhanced mRNA accumulation occurred mainly in the basal region (lower stem and root). This -1,3-glucanase glucanase mRNA was constitutively expressed in the roots of pea seedlings. The sustained levels of -glucanase mRNA expression induced by the incompatible pathogen in the resistance response suggests that the enzyme contributes to the pea plant's general defense.  相似文献   

6.
A -amylase (EC 3.2.1.2) was identified in the outer pericarp (P) of developing seeds of wheat (Triticum aestivum L.) and compared with the well known -amylase which is synthesized during seed development in the starchy endosperm (E). The enzyme P already exists in the tissues before anthesis and vanishes at the time when E starts to accumulate. The isoelectric-focusing patterns of P and E are very similar. The relative molecular weight (Mr) of P is slightly higher than that of E (66 and 64.5 kDa, respectively). Both P and E exhibit common epitopes in addition to epitopes specific for each of them. The two enzymes were identified in small amounts in the green tissues of the developing seeds (inner pericarp and testa). No antigenic difference was detected between P and the -amylases of roots and leaves.Abbreviations P pericarp -amylase - E endosperm -amylase - IS1 anti--amylase immune serum - IS2 anti- and anti- amylase immune serum - IS3 anti- amylase immune serum - IEF isoelectric focusing - IgG immunoglobulin G The authors thank Dr. P. Ziegler (Universität Bayreuth, FRG) for stimulating discussion and for useful suggestions during the writing of the text. The authors thank Miss C. Mayer for her skillful technical assistance.  相似文献   

7.
-1,3-Glucanase (Lu) was isolated from unfertilized eggs of the sea urchin Strongylocentrotus intermedius. A comparative study of some properties of -1,3-glucanase Lu and -1,3-glucanases with different action types—endo--1,3-glucanase from crystalline style of the marine mollusk Spisula sachalinensis (LIV) and exo--1,3-glucanase from the terrestrial snail Eulota maakii (LII)—was performed. It was found that -1,3-glucanase Lu hydrolyzes laminaran with a high yield of glucose in the reaction products. The enzyme hydrolyzes substrates with retention of the glycosidic bond configuration, is able to cleave modified substrates, and exhibits transglycosylating activity. All properties of -1,3-glucanase from S. intermedius were more similar to those of the endo--1,3-glucanase from the marine mollusk (LIV) than exo--1,3-glucanase LII from the terrestrial snail. The differences in the effect of LIV and Lu on laminaran are probably related to the functions of -1,3-glucanase Lu from sea urchin eggs (which, in contrast to LIV, is not a digestive enzyme).  相似文献   

8.
Summary The activities of three glycosidases, -glucosidase and (1,3)- and (1,6)-glucanases have been monitored during growth and blastospore formation inSaccharomycopsis fibuligera. The assays were carried out on the cell-free culture and in a cell-free extract and a wall autolysate preparation from the growing cells. In complex medium containing 1% glucose an increase in the level of all three enzymes was associated with the transition from mycelium to blastospores. When the level of glucose was increased to 5% blastospore formation was repressed and the level of -glucanases only increased at the end of the fermentation. The -glucosidase activity increased during the growth phase. In a defined medium in which slow growth in a wholly yeast-like form was observed, growth was not associated with a high level of -glucanase activity.  相似文献   

9.
G. Felix  F. Meins Jr. 《Planta》1986,167(2):206-211
A highly sensitive and specific rocket immunoassay was used to measure the content of an endo-type -1,3-glucanase (EC 3.2.1.39) in tissues of Nicotiana tabacum L. cv. Havana 425. We show that the accumulation of -1,3-glucanase in cultured pith-parenchyma tissue is blocked by combinations of the auxin, -naphthaleneacetic acid (NAA), and the cytokinin, kinetin. When tissues pre-incubated for 7 d on complete medium containing 2.0 mg·l-1 NAA and 0.3 mg·l-1 kinetin are transferred onto medium without hormones or with either hormone added separately, the -1,3-glucanase content expressed per mg soluble protein increases approx. ten fold over a 7-d period. Under these inductive conditions, up to approx. 5% of the soluble protein is -1,3-glucanase. The induction is inhibited by >90% when tissues are cultured over the same period on medium containing both hormones. This -1,3-glucanase is developmentally regulated in the intact plant. It is a major component of the soluble protien in the lower leaves and roots but is not detectable in leaves near the top of the plant.Abbreviation NAA -naphthaleneacetic acid  相似文献   

10.
In modern malting barley breeding it is important to increase the level of -amylase activity level in barley. The aim of this study was to investigate if a PCR method for screening -amy1 alleles can be used as an indicator for -amylase activity level in barley. Activity was assayed from 24 cultivars, 7 lines, and a Hordeum spontaneum PI 296897 strain grown in the same field. The -amy1 alleles were identified by amplifying the intron III-specific region of the gene using PCR. No new alleles were detected in addition to the three alleles found earlier: cv Adorra-like, cv Haruna Nijo-like and PI 296897-like -amy1 allele. Samples were grouped according to the nature of their -amy1 locus and enzyme activities were compared between the groups. Cultivars carrying a cv Haruna Nijo-like -amy1 allele had 1.3 times and lines carrying a PI 296897-like -amy1 allele had 2.1 times higher -amylase activity than cultivars carrying a cv Adorra-like -amy1 allele. The mean activities are significantly different in the allele groups (Kruskal–Wallis: for protein H= 11.54, P< 0.01; for meal H= 12.74, P< 0.01). PCR fragments can be used as allele specific markers to predict the level of -amylase activity in breeding when such variation of the intron III is concerned.  相似文献   

11.
A (13)--D-glucan 3-glucanonydrolase (EC 3.2.1.39) of apparent M r 32 000, designated GII, has been purified from germinated barley grain and characterized. The isoenzyme is resolved from a previously purified isoenzyme (GI) on the basis of differences in their isoelectric points; (13)--glucanases GI and GII have pI values of 8.6 and 10.0, respectively. Comparison of the sequences of their 40 NH2-terminal amino acids reveals 68% positional identity. A 1265 nucleotide pair cDNA encoding (13)--glucanase isoenzyme GII has been isolated from a library prepared with mRNA of 2-day germinated barley scutella. Nucleotide sequence analysis of the cDNA has enabled the complete primary structure of the 306 amino acid (13)--glucanase to be deduced, together with that of a putative NH2-terminal signal peptide of 28 amino acid residues. The (13)--glucanase cDNA is characterized by a high (G+C) content, which reflects a strong bias for the use of G or C in the wobble base position of codons. The amino acid sequence of the (13)--glucanase shows highly conserved internal domains and 52% overall positional identity with barley (13, 14)--glucanase isoenzyme EII, an enzyme of related but quite distinct substrate specificity. Thus, the (13)--glucanases, which may provide a degree of protection against microbial invasion of germinated barley grain through their ability to degrade fungal cell wall polysaccharides, appear to share a common evolutionary origin with the (13, 14)--glucanases, which function to depolymerize endosperm cell walls in the germinated grain.  相似文献   

12.
Mixed membrane preparations from the coleoptiles and first leaves of young barley (Hordeum vulgare L. cv. Triumph) plants catalysed the synthesis of 55% methanol-insoluble labelled material from UDP[U-14C]glucose, the main components of which were identified as (1,3)(1,4)-- and (1,3)--D-glucans. The membrane preparations also catalysed the transformation of UDP-glucose into labelled low-molecular-weight products, mainly glucose (by phosphatase action), glucose-1-phosphate (by phosphodiesterase action) and glyco(phospho)lipids (by glycosyltransferase action). The formation of (1,3)(1,4)--glucans, (1,3)--glucans, and the other reactions competing for UDP-glucose, were monitored simultaneously and quantitatively by a novel procedure based on enzymatic analysis, thin-layer chromatography and digital autoradiography. Thus it was possible (i) to optimise conditions to obtain (1,3)(1,4)--glucan synthesis or (1,3)--glucan synthesis in isolation, and (ii) to study the influence of temperature, pH, cofactors, substrate concentration etc. on the (1,3)(1,4) and (1,3)--glucan synthesis reactions even when both occurred together. The synthesis of both -glucans was optimal at 20°C. In Tris-HCl buffer, the pH optima for (1,3)(1,4)--glucan synthesis and (1,3)--glucan synthesis were pH 8.5 and pH 7.0, respectively. Both glucan-synthesis reactions required Mg2+: (1,3)--glucan synthesis was optimal at 2 mM, whereas (1,3)(1,4)--glucan synthesis continued to increase up to 200 mM Mg2+, when the ion was supplied as the sulphate. (1,3)--Glucan synthesis was Ca2+ dependent and this dependence could be abolished by proteinase treatment. The K m with respect to UDP-glucose was 1.5 mM for (1,3)--glucan synthesis and approximately 1 mM for (1,3)(1,4)--glucan synthesis. The (1,3)(1,4)--glucan formed in vitro had the same ratio of trisaccharide to tetrasaccharide structural blocks irrespective of the experimental conditions used during the synthesis: its enzymatic fragmentation pattern was indistinguishable from that of barley endosperm (1,3)(1,4)--glucan. This indicates either a single synthase enzyme, which is responsible for the formation of both linkage types, or two enzymes which are very tightly coupled functionally.Abbreviations G4G4G3G Glc(1,4)Glc(1,4)Glc(1,3)Glc (-linked) - UDP-Glc uridine-5-diphosphate glucose We are grateful to the Commission of the European Communities for the award of Training Fellowships to Christine Vincent and Martin Becker.  相似文献   

13.
P. Bucheli  M. Dürr  A. J. Buchala  H. Meier 《Planta》1985,166(4):530-536
Cotton fibres possess several -glucanase activities which appear to be associated with the cell wall, but which can be partially solubilised in buffers. The main activity detected was that of an exo-(13)--d-glucanase (EC 3.2.1.58) but which also had the characteristics of a -glucosidase (EC 3.2.1.21). Endo-(13)--d-glucanase activity (EC 3.2.1.39) and much lower levels of (14)--d-glucanase activity were also detected. The exo-(13)--glucanase showed a maximum late on (40 days post-anthesis) in the development of the fibres, whereas the endo-(13)--glucanase activity remained constant throughout fibre development. The -glucanase complex associated with the cotton-fibre cell wall also functions as a transglucosylase introducing, inter alia, (16)--glucosyl linkages into the disaccharide cellobiose to give the trisaccharide 4-O--gentiobiosylglucose.Abbreviations CMC carboxymethylcellulose - ONPG o-nitrophenyl--d-glucopyranoside - TLC thin-layer chromatography Presented at the Third Cell Wall Meeting held in Fribourg in 1984  相似文献   

14.
Summary Association of -amylase with starch granules in the starchy endosperm of barley (Hordeum vulgare L. cv. Menuet) grains was characterized biochemically. In whole homogenates of dry seeds, two forms of -amylase were detected: one is free -amylase extractable with saline solution and the other is bound -amylase extractable with saline solution containing a reducing agent. The two forms of -amylase were shown to be identical in terms of mobility on disc gels, antigenicity, and molecular specific activity, indicating that the -amylase molecules of the two forms are identical. The starch granules were isolated from either dry seeds or mature seeds harvested before the desiccation phase. Both starch granule preparations were morphologically identical by microscopic inspection. The bound -amylase was predominantly associated with starch granules isolated from dry seeds, whereas it was not associated with starch granules from mature seeds harvested before desiccation. Overall results show that the periphery of starch granules is the major site of deposition for bound -amylase in dry seeds. The association of -amylase with starch granules occurs during the desiccation phase of seed development, resulting in the conversion of free -amylase into a bound form.Recipient of an award from the Union Générale de la Brasserie Française (I. H.-N.) and from the Centre National de la Recherche Scientifique and the Japan Society for the Promotion of Science under the France-Japan Cooperative Science Programme, 1985 (M.N.).  相似文献   

15.
Genetic study of -glucan content and -glucanase activity has been facilitated by recent developments in quantitative trait loci (QTL) analysis. QTL for barley and malt -glucan content and for green and finished malt -glucanase activity were mapped using a 123-point molecular marker linkage map from the cross of Steptoe/Morex. Three QTL for barley -glucan, 6 QTL for malt -glucan, 3 QTL for -glucanase in green malt and 5 QTL for -glucanase in finished malt were detected by interval mapping procedures. The QTL with the largest effects on barley -glucan, malt glucan, green malt -glucanase and finished malt glucanase were identified on chromosomes 2,1,4 and 7, respectively. A genome map-based approach allows for dissection of relationships among barley and malt glucan content, green and finished malt -glucanase activity, and other malting quality parameters.  相似文献   

16.
Ninety fungal strains (42 species) isolated from marine habitats were studied for their ability to produce extracellular enzymes. Cultural filtrates of these strains were shown to contain a series of glycosidases (-glucosidases, N-acetyl--glucosaminidases, -galactosidases -mannosidases) and glucanases (1,3--glucanases, amylases) which varied with habitat. The level of activity depended on the species of fungi. Several promising strains capable of producing both individual enzymes and a set of enzymes for splitting carbohydrate-containing compound have been isolated. Optimal conditions for growth of Chaetomium indicum and for biosynthesis of -1,3-glucanase were determined. -1,3-Glucanase was isolated using ion-exchange chromatography, ultrafiltration, and gel filtration. The presence of 2 enzyme forms was shown; both forms were exo--1,3-glucanases.  相似文献   

17.
Gal1-3GlcNAc (1) and Gal1-3GlcNAc-SEt (2) were synthesized on a 100 mg scale by the transgalactosylation reaction of bovine testes -galactosidase with lactose as donor andN-acetylglucosamine and GlcNAc-SEt as acceptors. In both cases the product mixtures contained unwanted isomers and were treated with -galactosidase fromEscherichia coli which has a different specificity, under conditions favouring hydrolysis, yielding besides the desired products, monosaccharides and traces of trisaccharides. The products were purified to >95% by gel filtration, with a final yield of 12% of 1 and 17% of 2, based on added acceptor. In a separate experiment Gal1-6GlcNAc-SEt (3) was synthesized by the transglycosylation reaction using -galactosidase fromEscherichia coli. No other isomers were detected. Compound 3 was purified by HPLC.  相似文献   

18.
A new full-length -1,3-glucanase cDNA was obtained by RT-PCR and RACE techniques from Tibet hulless barley and its complete gene sequence obtained by DNA Walking. Sequence alignment with the BLAST program showed that cDNA has high similarity with barley -1,3-glucanase II. The gene was functionally expressed in E. coli and the recombinant protein catalysed the hydrolysis of -1,3-glucan with an action pattern characteristic of a -1,3-glucan endohydrolase (EC 3.2.1.39). Southern blot analysis indicated that the gene is a member of a small gene family. RT-PCR and northern blot analysis indicated it is constitutively expressed in barley shoots.  相似文献   

19.
The parallel /-barrel domain consisting of eight parallel -sheets surrounded by eight -helices has been currently identified in crystal structures of more than 20 enzymes. This type of protein folding motif makes it possible to catalyze various biochemical reactions on a variety of substrates (i.e., it seems to be robust enough so that different enzymatic functionalities could be designed on it). In spite of many efforts aimed at elucidation of evolutionary history of the present-day /-barrels, a challenging question remains unanswered: How has the parallel /-barrel fold arisen? Although the complete sequence comparison of all /-barrel amino acid sequences is not yet available, several sequence similarities have been revealed by using the highly conserved regions of -amylase as structural templates. Since many starch-processing enzymes adopt the parallel /-barrel structure these enzymes might be useful in the search for evolutionary relationships of the whole parallel eight-folded /-barrel enzyme family.  相似文献   

20.
Tomato leaves infected by the fungal pathogen Cladosporium fulvum contain several types of intracellular and extracellular pathogenesis-related (PR) proteins. Previously, we reported the purification and serological characterization of five extracellular PR proteins: P2, P4, P6, a chitinase and a -1,3-glucanase [22, 23]. Here we describe the purification of a basic intracellular 33 kDa -1,3-glucanase and the isolation and characterization of cDNA clones encoding the two extracellular P14 isomers P4 and P6, the extracellular acidic -1,3-glucanase and a basic 35 kDa -1,3-glucanase, different from the purified 33 kDa protein. Southern blot analysis demonstrated that tomato PR proteins are not encoded by large gene families, as is the case in tobacco. The number of genes corresponding to each protein was estimated to vary between one and three. A northern blot analysis indicated that the mRNAs for the extracellular PR proteins (P4, P6 and acidic -1,3-glucanase) accumulate to similar levels in compatible and incompatible tomato-C. fulvum interactions, although the maximum level of expression is reached much faster in the incompatible interaction. On the other hand, the mRNA for the basic 35 kDa -1,3-glucanase is induced rapidly to high levels in both interactions, but declines in time to background levels only in the incompatible interaction. The relevance of this difference in relation to plant defence is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号