首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several regulatory proteins control cell cycle progression. These include Emi1, an anaphase-promoting complex (APC) inhibitor whose destruction controls progression through mitosis to G1, and p21WAF1, a cyclin-dependent kinase (CDK) inhibitor activated by DNA damage. We have analyzed the role of p21WAF1 in G2-M phase checkpoint control and in prevention of polyploidy after DNA damage. After DNA damage, p21+/+ cells stably arrest in G2, whereas p21−/− cells ultimately progress into mitosis. We report that p21 down-regulates Emi1 in cells arrested in G2 by DNA damage. This down-regulation contributes to APC activation and results in the degradation of key mitotic proteins including cyclins A2 and B1 in p21+/+ cells. Inactivation of APC in irradiated p21+/+ cells can overcome the G2 arrest. siRNA-mediated Emi1 down-regulation prevents irradiated p21−/− cells from entering mitosis, whereas concomitant down-regulation of APC activity counteracts this effect. Our results demonstrate that Emi1 down-regulation and APC activation leads to stable p21-dependent G2 arrest after DNA damage. This is the first demonstration that Emi1 regulation plays a role in the G2 DNA damage checkpoint. Further, our work identifies a new p21-dependent mechanism to maintain G2 arrest after DNA damage.  相似文献   

2.
Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atm−/− p53−/− mice develop lymphomas earlier than Atm−/− or p53−/− mice, indicating that mutations in these two genes lead to synergy in tumorigenesis. The cell cycle G1/S checkpoint is abolished in Atm−/− p53−/− mouse embryonic fibroblasts (MEFs) following γ-irradiation, suggesting that the partial G1 cell cycle arrest in Atm−/− cells following γ-irradiation is due to the residual p53 response in these cells. In addition, the Atm−/− p21−/− MEFs are more severely defective in their cell cycle G1 arrest following γ-irradiation than Atm−/− and p21−/− MEFs. The Atm−/− MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm−/− p21−/− MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm−/− p53−/− MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm−/− cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm−/− MEFs is lower than that in Atm+/+ MEFs, suggesting that the higher level of constitutive p21 protein in Atm−/− MEFs is likely due to increased stability of the p21 protein.  相似文献   

3.
During a normal cell cycle, entry into S phase is dependent on completion of mitosis and subsequent activation of cyclin-dependent kinases (Cdks) in G1. These events are monitored by checkpoint pathways. Recent studies and data presented herein show that after treatment with microtubule inhibitors (MTIs), cells deficient in the Cdk inhibitor p21Waf1/Cip1 enter S phase with a ≥4N DNA content, a process known as endoreduplication, which results in polyploidy. To determine how p21 prevents MTI-induced endoreduplication, the G1/S and G2/M checkpoint pathways were examined in two isogenic cell systems: HCT116 p21+/+ and p21−/− cells and H1299 cells containing an inducible p21 expression vector (HIp21). Both HCT116 p21−/− cells and noninduced HIp21 cells endoreduplicated after MTI treatment. Analysis of G1-phase Cdk activities demonstrated that the induction of p21 inhibited endoreduplication through direct cyclin E/Cdk2 regulation. The kinetics of p21 inhibition of cyclin E/Cdk2 activity and binding to proliferating-cell nuclear antigen in HCT116 p21+/+ cells paralleled the onset of endoreduplication in HCT116 p21−/− cells. In contrast, loss of p21 did not lead to deregulated cyclin D1-dependent kinase activities, nor did p21 directly regulate cyclin B1/Cdc2 activity. Furthermore, we show that MTI-induced endoreduplication in p53-deficient HIp21 cells was due to levels of p21 protein below a threshold required for negative regulation of cyclin E/Cdk2, since ectopic expression of p21 restored cyclin E/Cdk2 regulation and prevented endoreduplication. Based on these findings, we propose that p21 plays an integral role in the checkpoint pathways that restrain normal cells from entering S phase after aberrant mitotic exit due to defects in microtubule dynamics.  相似文献   

4.
5.
p27kip1 is a cyclin-dependent kinase inhibitor and a tumor suppressor. In some tumors, p27 suppresses tumor growth by inhibition of cell proliferation. However, this is not universally observed, implying additional mechanisms of tumor suppression by p27. p27-deficient mice are particularly susceptibility to genotoxin-induced tumors, suggesting a role for p27 in the DNA damage response. To test this hypothesis, we measured genotoxin-induced mutations and chromosome damage in p27-deficient mice. Both p27+/− and p27−/− mice displayed a higher N-ethyl-N-nitrosourea-induced mutation frequency in the colon than p27+/+ littermates. Furthermore, cells from irradiated p27-deficient mice exhibited a higher number of chromatid breaks and showed modestly increased micronucleus formation compared to cells from wild-type littermates. To determine if this mutator phenotype was related to the cell cycle-inhibitory function of p27, we measured cell cycle arrest in response to DNA damage. Both normal and tumor cells from p27-deficient mice showed impaired G2/M arrest following low doses of ionizing radiation. Thus, p27 may inhibit tumor development through two mechanisms. The first is by reducing the proliferation of cells that have already sustained an oncogenic lesion. The second is by transient inhibition of cell cycle progression following genotoxic insult, thereby minimizing chromosome damage and fixation of mutations.  相似文献   

6.
Mouse adenovirus type 1 (MAV-1) mutants with deletions of conserved regions of early region 1A (E1A) or with point mutations that eliminate translation of E1A were used to determine the role of E1A in MAV-1 replication. MAV-1 E1A mutants expressing no E1A protein grew to titers comparable to wild-type MAV-1 titers on mouse fibroblasts (3T6 fibroblasts and fibroblasts derived from Rb+/+, Rb+/−, and Rb−/− transgenic embryos). To test the hypothesis that E1A could induce a quiescent cell to reenter the cell cycle, fibroblasts were serum starved to stop DNA replication and cellular replication and then infected with the E1A mutant and wild-type viruses. All grew to equivalent titers. Steady-state levels of MAV-1 early mRNAs (E1A, E1B, E2, E3, and E4) from 3T6 cells infected with wild-type or E1A mutant virus were examined by Northern analysis. Steady-state levels of mRNAs from the mutant-infected cells were comparable to or greater than the levels found in wild-type virus infections for most of the early regions and for two late genes. The E2 mRNA levels were slightly reduced in all mutant infections relative to wild-type infections. E1A mRNA was not detected from infections with the MAV-1 E1A null mutant, pmE109, or from infections with similar MAV-1 E1A null mutants, pmE112 and pmE113. The implications for the lack of a requirement of E1A in cell culture are discussed.  相似文献   

7.
Targeted disruption of murine Cdk2ap1, an inhibitor of CDK2 function and hence G1/S transition, results in the embryonic lethality with a high penetration rate. Detailed timed pregnancy analysis of embryos showed that the lethality occurred between embryonic day 3.5 pc and 5.5 pc, a period of implantation and early development of implanted embryos. Two homozygous knockout mice that survived to term showed identical craniofacial defect, including a short snout and a round forehead. Examination of craniofacial morphology by measuring Snout Length (SL) vs. Face Width (FW) showed that the Cdk2ap1+/− mice were born with a reduced SL/FW ratio compared to the Cdk2ap1+/+ and the reduction was more pronounced in Cdk2ap1−/− mice. A transgenic rescue of the lethality was attempted by crossing Cdk2ap1+/− animals with K14-Cdk2ap1 transgenic mice. Resulting Cdk2ap1+/−:K14-Cdk2ap1 transgenic mice showed an improved incidence of full term animals (16.7% from 0.5%) on a Cdk2ap1−/− background. Transgenic expression of Cdk2ap1 in Cdk2ap1−/−:K14-Cdk2ap1 animals restored SL/FW ratio to the level of Cdk2ap1+/−:K14-Cdk2ap1 mice, but not to that of the Cdk2ap1+/+:K14-Cdk2ap1 mice. Teratoma formation analysis using mESCs showed an abrogated in vivo pluripotency of Cdk2ap1−/− mESCs towards a restricted mesoderm lineage specification. This study demonstrates that Cdk2ap1 plays an essential role in the early stage of embryogenesis and has a potential role during craniofacial morphogenesis.  相似文献   

8.
The staurosporine-induced G1 cell cycle arrest was analyzed in a variety of cell lines which includes human tumor cell lines and oncogene-transformed NIH3T3 cell lines. All the cell lines which were sensitive to staurosporine-induced G1 arrest contained a functional retinoblastoma protein (pRB). However, when pRB-lacking fibroblast cells derived from pRB knockout mice were tested they were also sensitive to G1 arrest by staurosporine, indicating that the inactivation of pRB alone is not sufficient for the abrogation of staurosporine-induced G1 arrest. In searching for a common event caused by staurosporine, the cyclin-dependent kinase (CDK) inhibitor protein p27kip1but not p21cip1was found to accumulate after staurosporine treatment in all the cell lines examined. This accumulation occurred regardless of the induction of the G1 arrest. The result indicates that the accumulation of p27kip1is the cell's primary response to staurosporine and that the capability of staurosporine to induce G1 arrest depends on the integrity of cell cycle regulatory components which are downstream of p27kip1.  相似文献   

9.
Despite being the most evolutionarily conserved of the mammalian caspases, little is understood about the cellular function of caspase-2 in normal tissues or what role caspase-2 may have in the progression of human disease. It has been reported that deletion of the caspase-2 gene (Casp2), accelerates Eμ-myc lymphomagenesis in mice, and thus caspase-2 may act as a tumor suppressor in hematological malignancies. Here, we sought to extend these findings to epithelial cancers by examining the potential role of caspase-2 as a tumor suppressor in the mouse mammary carcinogenesis model; MMTV/c-neu. The rate of tumor acquisition was significantly higher in multiparous Casp2−/−/MMTV mice compared with Casp2+/+/MMTV and Casp2+/−/MMTV mice. Cells from Casp2−/−/MMTV tumors were often multinucleated and displayed bizarre mitoses and karyomegaly, while cells from Casp2+/+/MMTV and Casp2+/−/MMTV tumors never displayed this phenotype. Tumors from Casp2−/−/MMTV animals had a significantly higher mitotic index than tumors from Casp2+/+/MMTV and Casp2+/−/MMTV animals. Cell cycle analysis of Casp2−/− E1A/Ras-transformed mouse embryonic fibroblasts (MEF) also indicated a higher proliferative rate in the absence of caspase-2. In vitro assays further illustrated that MEF had increased genomic instability in the absence of caspase-2. This appears to be due to disruption of the p53 pathway because we observed a concomitant decrease in the induction of the p53 target genes, Pidd, p21 and Mdm2. Thus caspase-2 may function as a tumor suppressor, in part, through regulation of cell division and genomic stability.  相似文献   

10.
The growth rate of Chromohalobacter salexigens DSM 3043 can be stimulated in media containing 0.3 M NaCl by a 0.7 M concentration of other salts of Na+, K+, Rb+, or NH4+, Cl, Br, NO3, or SO42− ions. To our knowledge, growth rate stimulation by a general high ion concentration has not been reported for any organism previously.  相似文献   

11.
The Cip/Kip family, namely, p21Cip1, p27Kip1, and p57Kip2, are stoichiometric cyclin-dependent kinase inhibitors (CKIs). Paradoxically, they have been proposed to also act as positive regulators of Cdk4/6-cyclin D by stabilizing these heterodimers. Loss of p21Cip1 and p27Kip1 reduces Cdk4/6-cyclin D complexes, although with limited phenotypic consequences compared to the embryonic lethality of Cdk4/6 or triple cyclin D deficiency. This milder phenotype was attributed to Cdk2 compensatory mechanisms. To address this controversy using a genetic approach, we generated Cdk2−/− p21−/− p27−/− mice. Triple-knockout mouse embryonic fibroblasts (MEFs) displayed minimal levels of D-type cyclins and Cdk4/6-cyclin D complexes. p57Kip2 downregulation in the absence of p21Cip1 and p27Kip1 aggravated this phenotype, yet MEFs lacking all Cip/Kip proteins exhibited increased retinoblastoma phosphorylation, together with enhanced proliferation and transformation capacity. In vivo, Cdk2 ablation induced partial perinatal lethality in p21−/− p27−/− mice, suggesting partial Cdk2-dependent compensation. However, Cdk2−/− p21−/− p27−/− survivors displayed all phenotypes described for p27−/− mice, including organomegalia and pituitary tumors. Thus, Cip/Kip deficiency does not impair interphasic Cdk activity even in the absence of Cdk2, suggesting that their Cdk-cyclin assembly function is dispensable for homeostatic control in most cell types.  相似文献   

12.
13.
The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G1 following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53+/+ and p53−/− murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time. Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted. We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis. Despite having 4N DNA content, adapted cells are similar to G1 cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21−/− fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation. Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.  相似文献   

14.
sep1+ encodes a Schizosaccharomyces pombe homolog of the HNF-3/forkhead family of the tissue-specific and developmental gene regulators identified in higher eukaryotes. Its mutant allele sep1-1 causes a defect in cytokinesis and confers a mycelial morphology. Here we report on genetic interactions of sep1-1 with the M-phase initiation mutations wee1, cdc2-1w, and cdc25-22. The double mutants sep1-1 wee1 and sep1-1 cdc2-1w form dikaryon cells at high frequency, which is due to nuclear division in the absence of cell division. The dikaryosis is reversible and suppressible by cdc25-22. We propose that the genes wee1+, cdc2+, cdc25+, and sep1+ form a regulatory link between the initiation of mitosis and the initiation of cell division.  相似文献   

15.
Prior studies in our laboratory have suggested that the CC chemokine macrophage inflammatory protein-1α (MIP-1α) may be an important mediator in the blinding ocular inflammation which develops following herpes simplex virus type 1 (HSV-1) infection of the murine cornea. To directly test this hypothesis, MIP-1α-deficient (−/−) mice and their wild-type (+/+) counterparts were infected topically on the scarified cornea with 2.5 × 105 PFU of HSV-1 strain RE and subsequently graded for corneal opacity. Four weeks postinfection (p.i.), the mean corneal opacity score of −/− mice was 1.1 ± 0.3 while that of the +/+ mice was 3.7 ± 0.5. No detectable infiltrating CD4+ T cells were seen histologically at 14 or 21 days p.i. in −/− animals, whereas the mean CD4+ T-cell count per field (36 fields counted) in +/+ hosts was 26 ± 2 (P < 0.001). In addition, neutrophil counts in the −/− mouse corneas were reduced by >80% in comparison to the wild-type controls. At 2 weeks p.i., no interleukin-2 or gamma interferon could be detected in six of seven −/− mice, whereas both T-cell cytokines were readily demonstrable in +/+ mouse corneas. Also, MIP-2 and monocyte chemoattractant protein-1 protein levels were significantly lower in MIP-1α −/− mouse corneas than in +/+ host corneas, suggesting that MIP-1α directly, or more likely indirectly, influences the expression of other chemokines. Interestingly, despite the paucity of infiltrating cells, HSV-1 clearance from the eyes of −/− mice was not significantly different from that observed in +/+ hosts. We conclude that MIP-1α is not needed to control virus growth in the cornea but is essential for the development of severe stromal keratitis.  相似文献   

16.
The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21Cip1/p27Kip1/p57Kip2-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap−/− females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap−/− ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap−/− DNA damage phenotype. Importantly, the DNA damage observed in dap−/− ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap−/− ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.  相似文献   

17.
18.
A tightly controlled balance between hematopoietic stem and progenitor cell compartments is required to maintain normal blood cell homeostasis throughout life, and this balance is regulated by intrinsic and extrinsic cellular factors. Cav-1 is a 22-kDa protein that is located in plasma membrane invaginations and is implicated in regulating neural stem cell and embryonic stem cell proliferation. However, the role of Cav-1 in hematopoietic stem cell (HSC) function is largely unknown. In this study, we used Cav-1−/− mice to investigate the role of Cav-1 in HSCs function during aging. The results showed that Cav-1−/− mice displayed a decreased percentage of B cells and an increased percentage of M cells in the bone marrow and peripheral blood, and these changes were due to an increased number of HSCs. FACS analysis showed that the numbers of LinSca1+c-kit+ cells (LSKs), long-term HSCs (LT-HSCs), short-term HSCs and multipotent progenitors were increased in Cav-1−/− mice compared with Cav-1+/+ mice, and this increase became more pronounced with aging. An in vitro clonogenic assay showed that LT-HSCs from Cav-1−/− mice had reduced ability to self-renew. Consistently, an in vivo competitive transplantation assay showed that Cav-1−/− mice failed to reconstitute hematopoiesis. Moreover, a Cav-1 deletion disrupted the quiescence of LSKs and promoted cell cycle progression through G2/M phase. In addition, we found that Cav-1 deletion impaired the ability of HSCs to differentiate into mature blood cells. Taken together, these data suggest that Cav-1-deficient cells impaired HSCs quiescence and induced environmental alterations, which limited HSCs self-renewal and function.  相似文献   

19.

Background

Previous work has established that HGF/c-Met signaling plays a pivotal role in regulating the onset of S phase following partial hepatectomy (PH). In this study, we used Metfl/fl;Alb-Cre+/− conditional knockout mice to determine the effects of c-Met dysfunction in hepatocytes on kinetics of liver regeneration.

Methodology/Principal Finding

The priming events appeared to be intact in Metfl/fl;Alb-Cre+/− livers. Up-regulation of stress response (MAFK, IKBZ, SOCS3) and early growth response (c-Myc, c-Jun, c-Fos, DUSP1 and 6) genes as assessed by RT-qPCR and/or microarray profiling was unchanged. This was consistent with an early induction of MAPK/Erk and STAT3. However, after a successful completion of the first round of DNA replication, c-Met deficient hepatocytes were blocked in early/mid G2 phase as shown by staining with phosphorylated form of histone H3. Furthermore, loss of c-Met in hepatocytes diminished the subsequent G1/S progression and delayed liver recovery after partial hepatectomy. Upstream signaling pathways involved in the blockage of G2/M transition included lack of persistent Erk1/2 activation and inability to up-regulate the levels of Cdk1, Plk1, Aurora A and B, and Mad2 along with a defective histone 3 phosphorylation and lack of chromatin condensation. Continuous supplementation with EGF in vitro increased proliferation of Metfl/fl;Alb-Cre+/− primary hepatocytes and partially restored expression levels of mitotic cell cycle regulators albeit to a lesser degree as compared to control cultures.

Conclusion/Significance

In conclusion, our results assign a novel non-redundant function for HGF/c-Met signaling in regulation of G2/M gene expression program via maintaining a persistent Erk1/2 activation throughout liver regeneration.  相似文献   

20.
Self‐renewal of pluripotent human embryonic stem (hES) cells utilizes an abbreviated cell cycle that bypasses E2F/pRB‐dependent growth control. We investigated whether self‐renewal is alternatively regulated by cyclin/CDK phosphorylation of the p220NPAT/HiNF‐P complex to activate histone gene expression at the G1/S phase transition. We show that cyclin D2 is prominently expressed in pluripotent hES cells, but cyclin D1 eclipses cyclin D2 during differentiation. Depletion of cyclin D2 or p220NPAT causes a cell cycle defect in G1 reflected by diminished phosphorylation of p220NPAT, decreased cell cycle dependent histone H4 expression and reduced S phase progression. Thus, cyclin D2 and p220NPAT are principal cell cycle regulators that determine competency for self‐renewal in pluripotent hES cells. While pRB/E2F checkpoint control is relinquished in human ES cells, fidelity of physiological regulation is secured by cyclin D2 dependent activation of the p220NPAT/HiNF‐P mechanism that may explain perpetual proliferation of hES cells without transformation or tumorigenesis. J. Cell. Physiol. 222: 456–464, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号