首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer vaccines are designed to expand tumor antigen-specific T cells with effector function. However, they may also inadvertently expand regulatory T cells (Treg), which could seriously hamper clinical efficacy. To address this possibility, we developed a novel assay to detect antigen-specific Treg based on down-regulation of surface CD3 following TCR engagement, and used this approach to screen for Treg specific to the NY-ESO-1 tumor antigen in melanoma patients treated with the NY-ESO-1/ISCOMATRIXTM cancer vaccine. All patients tested had Treg (CD25bright FoxP3+ CD127neg) specific for at least one NY-ESO-1 epitope in the blood. Strikingly, comparison with pre-treatment samples revealed that many of these responses were induced or boosted by vaccination. The most frequently detected response was toward the HLA-DP4-restricted NY-ESO-1157–170 epitope, which is also recognized by effector T cells. Notably, functional Treg specific for an HLA-DR-restricted epitope within the NY-ESO-1115–132 peptide were also identified at high frequency in tumor tissue, suggesting that NY-ESO-1-specific Treg may suppress local anti-tumor immune responses. Together, our data provide compelling evidence for the ability of a cancer vaccine to expand tumor antigen-specific Treg in the setting of advanced cancer, a finding which should be given serious consideration in the design of future cancer vaccine clinical trials.  相似文献   

2.
Expression of NY-ESO-1 in a high proportion of different human tumors makes this protein a very attractive vaccine target. NY-ESO-1 peptides, recognized by HLA-A2-restricted CTL, have recently been described. However, it remains unclear how efficiently tumors generate these epitopes, and whether peptide analogues can be used for optimal expansion and activation of NY-ESO-1-specific HLA-A2-restricted CTL. By generating unique CTL clones, we demonstrate that NY-ESO-1-positive tumor cells are efficiently killed by HLA-A2-restricted CTL specific for the peptide epitope NY-ESO-1 157-165. Presentation of this epitope is not affected by the presence or absence of the proteasome subunits low molecular proteins 2 and 7 and is not blocked by proteasome inhibitors, while it is impaired in the TAP-deficient cell line LBL 721.174. NY-ESO-1 157-165 peptide analogues were compared for their antigenicity and immunogenicity using PBL from melanoma patients. Three peptides, containing the carboxyl-terminal cysteine substituted for either valine, isoleucine, or leucine, were recognized at least 100 times more efficiently than the wild-type peptide by specific CTL. Peptide analogues were capable of stimulating the expansion of NY-ESO-1-specific CTL from PBL of melanoma patients much more efficiently than wild-type peptide. These findings define the processing requirements for the generation of the NY-ESO-1 157-165 epitope. Identification of highly antigenic NY-ESO-1 peptide analogues may be important for the development of vaccines capable of expanding NY-ESO-1-specific CTL in cancer patients.  相似文献   

3.
Presentation of intracellular tumor-associated Ags (TAAs) in the context of HLA class I molecules offers unique cancer-specific cell surface markers for the identification and targeting of tumor cells. For most peptide Ags, the levels of and variations in cell surface presentation remain unknown, yet these parameters are of crucial importance when considering specific TAAs as targets for anticancer therapy. Here we use a soluble TCR with picomolar affinity for the HLA-A2-restricted 157-165 epitope of the NY-ESO-1 and LAGE-1 TAAs to investigate presentation of this immunodominant epitope on the surface of a variety of cancer cells. By single molecule fluorescence microscopy, we directly visualize HLA-peptide presentation for the first time, demonstrating that NY-ESO-1/LAGE-1-positive tumor cells present 10-50 NY-ESO-1/LAGE-1(157-165) epitopes per cell.  相似文献   

4.
NY-ESO-1 and LAGE-1 are cancer testis antigens with an ideal profile for tumor immunotherapy, combining up-regulation in many cancer types with highly restricted expression in normal tissues and sharing a common HLA-A*0201 epitope, 157–165. Here, we present data to describe the specificity and anti-tumor activity of a bifunctional ImmTAC, comprising a soluble, high-affinity T-cell receptor (TCR) specific for NY-ESO-1157–165 fused to an anti-CD3 scFv. This reagent, ImmTAC-NYE, is shown to kill HLA-A2, antigen-positive tumor cell lines, and freshly isolated HLA-A2- and LAGE-1-positive NSCLC cells. Employing time-domain optical imaging, we demonstrate in vivo targeting of fluorescently labelled high-affinity NYESO-specific TCRs to HLA-A2-, NY-ESO-1157–165-positive tumors in xenografted mice. In vivo ImmTAC-NYE efficacy was tested in a tumor model in which human lymphocytes were stably co-engrafted into NSG mice harboring tumor xenografts; efficacy was observed in both tumor prevention and established tumor models using a GFP fluorescence readout. Quantitative RT-PCR was used to analyze the expression of both NY-ESO-1 and LAGE-1 antigens in 15 normal tissues, 5 cancer cell lines, 10 NSCLC, and 10 ovarian cancer samples. Overall, LAGE-1 RNA was expressed at a greater frequency and at higher levels than NY-ESO-1 in the tumor samples. These data support the clinical utility of ImmTAC-NYE as an immunotherapeutic agent for a variety of cancers.  相似文献   

5.

Background

NY-ESO-1 belongs to the cancer/testis antigen (CTA) family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2''-deoxycytidine (DAC).

Methodology/Principal Findings

We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1(157–165) peptide specific chimeric antigen receptor (CAR) CD8+ T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels.

Conclusions/Significance

These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment.  相似文献   

6.
It has been predicted that nonameric peptides I (VP126–34, RRQHTDVSF), II (VP1157–165, RTLPTSFNY) and III (VP145–53, KEQVNVLDL) from the VP1 capsid protein of the foot-and-mouth disease virus (FMDV) are T cell epitopes. To investigate whether these peptides have immunological activity, BALB/c mice were immunized with peptide I, II or III conjugated with immunostimulating complexes (ISCOMs). A cytotoxic T lymphocyte assay was used to evaluate the cytotoxic activity induced by peptides along with by measuring peptide-specific T-cell proliferation and CD8+ T lymphocyte numbers in whole blood and interferon (IFN)-γ production in peripheral blood mononuclear cells induced by peptides. To further identify the protective efficacy of peptides, an FMDV challenge assay was done in guinea pigs. Peptides I and II stimulated significant increases in T-cell proliferation, CD8+ T lymphocytes, and IFN-γ secretion and cytotoxic activity compared to controls. The FMDV challenge assay indicated peptides I and II can protect over 60% of animals from virus attack. The results demonstrate that peptides I and II encapsulated in liposomes should be CTL epitopes of FMDV and can protect animals from virus attack to some extent.  相似文献   

7.
Lentiviral vectors can efficiently transduce a variety of nondividing cells, including APCs. We assessed the immunogenicity of a lentiviral vector encoding the melanoma Ag NY-ESO-1 in HLA-A2 transgenic mice. Direct i.v. injection of NY-ESO-1 lentivirus induced NY-ESO-1(157-165)-specific CD8(+) cells, detected ex vivo with an A2/H-2K(b) chimeric class I tetramer. These NY-ESO-1(157-165)-specific CD8(+) cells could be expanded by boosting with an NY-ESO-1 vaccinia virus and could kill NY-ESO-1(157-165) peptide-pulsed targets in vivo. Such direct lentiviral vector injection was similar in potency to the injection of in vitro-transduced dendritic cells (DC). In addition, human monocyte-derived DC transduced by the NY-ESO-1 lentivirus stimulated an NY-ESO-1(157-165)-specific specific CTL clone. These data suggest that direct lentiviral transduction of DC in vivo might provide a powerful immunotherapeutic strategy.  相似文献   

8.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

9.
Professional APCs, such as dendritic cells, are routinely used in vitro for the generation of cytotoxic T lymphocytes specific for tumor antigens. In addition to dendritic cells, CD40-activated B cells and variant K562 leukemic cells can be readily transfected with nucleic acids for in vitro and in vivo antigen presentation. However, the expression of immunoproteasome components in dendritic cells may preclude display of tumor antigens such as Mart1/MelanA. Here, we use three target epitopes, two derived from tumor antigens [Mart126?C34 (M26) and Cyp1B1239?C247 (Cyp239)] and one derived from the influenza A viral antigen [FluM158?C66 (FluM58)], to demonstrate that CD40-activated B cells, like dendritic cells, have a limited capability to process certain tumor antigens. In contrast, the K562 HLA-A*0201 transfectant efficiently processes and presents M26 and Cyp239 as well as the influenza FluM58 epitopes to T cells. These results demonstrate that the choice of target APC for gene transfer of tumor antigens may be limited by the relative efficacy of proteasome components to process certain tumor epitopes. Importantly, K562 can be exploited as an artificial APC, efficient in processing both M26 and Cyp239 epitopes and presumably, by extension, other relevant tumor antigens.  相似文献   

10.
Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.  相似文献   

11.
12.

Background

As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients.

Methods and Findings

To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-260–74 epitope and against the new epitope TRP-2149–163. Importantly, human T cells specifically recognizing target cells loaded with the TRP-2149–163-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1284–298 as a new HLA-DRB1*0301-restricted CD4+ T cell epitope.

Conclusions

Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.  相似文献   

13.

Background

Effector CD4 T cells represent a key component of the host’s anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection.

Methodology/Principal Findings

The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27low cells within a population of Mtb- specific CD4 T lymphocytes (“CD27lowIFN-γ+” cells). The percentages of CD27lowIFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27lowIFN-γ+ cells were uniformly high in the lungs (>76%), but varied in blood (12–92%). The major correlate for the accumulation of CD27lowIFN-γ+ cells in blood was lung destruction (r = 0.65, p = 2.7×10−7). A cutoff of 47% of CD27lowIFN-γ+ cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27lowIFN-γ+cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01).

Conclusions

Highly differentiated CD27low Mtb-specific (CD27lowIFN-γ+) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27lowIFN-γ+ cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27lowIFN-γ+ cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.  相似文献   

14.

Background

Antibodies to the water channel protein aquaporin-4 (AQP4), which is expressed in astrocytic endfeet at the blood brain barrier, have been identified in the serum of Neuromyelitis optica (NMO) patients and are believed to induce damage to astrocytes. However, AQP4 specific T helper cell responses that are required for the generation of anti-AQP4 antibodies and most likely also for the formation of intraparenchymal CNS lesions have not been characterized.

Methodology/Principal Findings

Using overlapping 15-meric peptides of AQP4, we identified the immunogenic T cell epitopes of AQP4 that are restricted to murine major histocompatibility complex (MHC) I-Ab. The N-terminal region of AQP4 was highly immunogenic. More precisely, the intracellular epitope AQP422–36 was detected as major immunogenic determinant. AQP482–108 (located in the second transmembrane domain), AQP4139–153 (located in the second extracellular loop), AQP4211–225 (located in the fifth transmembrane domain), AQP4235–249 (located in the sixth transmembrane domain), as well as AQP4289–306 in the intracellular C-terminal region were also immunogenic epitopes. AQP422–36 and AQP4289–303 specific T cells were present in the natural T cell repertoire of wild type C57BL/6 mice and T cell lines were raised. However, active immunization with these AQP4 peptides did not induce signs of spinal cord disease. Rather, sensitization with AQP4 peptides resulted in production of IFN-γ, but also IL-5 and IL-10 by antigen-specific T cells. Consistent with this cytokine profile, the AQP4 specific antibody response upon immunization with full length AQP4 included IgG1 and IgG2, which are associated with a mixed Th2/Th1 T cell response.

Conclusions and Significance

AQP4 is able to induce an autoreactive T cell response. The identification of I-Ab restricted AQP4 specific T cell epitopes will allow us to investigate how AQP4 specific autoimmune reactions are regulated and to establish faithful mouse models of NMO that include both cellular and humoral responses against AQP4.  相似文献   

15.
Sun M  Yang Y  Yang P  Lei B  Du L  Kijlstra A 《PloS one》2011,6(5):e19870

Background

Experimental autoimmune uveoretinitis (EAU) serves as a model for human intraocular inflammation. IFN-β has been used in the treatment of certain autoimmune diseases. Earlier studies showed that it ameliorated EAU; however, the mechanisms involved in this inhibition are still largely unknown.

Methodology/Principal Findings

B10RIII mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 161–180 in Complete Freund''s adjuvant. Splenocytes from different time points after immunization were used to evaluate the expression of IFN-β. An increased expression of IFN-β was observed during EAU and its highest expression was observed on day 16, 3 days after the peak of intraocular inflammation. Splenocytes and draining lymph node cells from mice immunized with IRBP161-180 on day 13 and control mice were activated with anti-CD3/anti-CD28 antibodies or IRBP161-180 to evaluate the production of IFN-γ and IL-17. The results showed that IFN-γ and IL-17 were significantly higher in immunized mice as compared to the control mice when exposed to anti-CD3/anti-CD28 antibodies. However, the production of IFN-γ and IL-17 was detected only in immunized mice, but not in the control mice when stimulated with IRBP161-180. Multiple subcutaneous injections of IFN-β significantly inhibited EAU activity in association with a down-regulated expression of IFN-γ, IL-17 and an enhanced IL-10 production. In an in vitro system using cells from mice, IFN-β suppressed IFN-γ production by CD4+CD62L T cells, IL-17 production by CD4+CD62L+/- T cells and proliferation of CD4+CD62L+/- T cells. IFN-β inhibited the secretion of IL-6, but promoted the secretion of IL-10 by monocytes. IFN-β-treated monocytes inhibited IL-17 secretion by CD4+CD62L+/- T cells, but did not influence IFN-γ expression and T cell proliferation.

Conclusions/Significance

IFN-β may exert its inhibitory effect on EAU by inhibiting Th1, Th17 cells and modulating relevant cytokines. IFN-β may provide a potential treatment for diseases mediated by Th1 and Th17 cells.  相似文献   

16.
NY-ESO-1, a germ cell Ag often detected in tumor tissues, frequently elicits Ab and CD8(+) T cell responses in cancer patients. Overlapping long peptides spanning the NY-ESO-1 sequence have been used to map HLA class I-restricted epitopes recognized by NY-ESO-1-specific CD8(+) T lymphocytes. To address the antigenicity of long peptides, we analyzed two synthetic 30-mer peptides from NY-ESO-1, polypeptides 80-109 and 145-174, for their capacity to be processed by APCs and to stimulate CD8(+) T cells. By incubating APCs with polypeptides at different temperatures or in the presence of protease inhibitors, we found that NY-ESO-1 polypeptides were rapidly internalized by B cells, T2 cells, or PBLs and submitted to cellular proteolytic action to yield nonamer epitopes presented by HLA class I. Polypeptides were also immunogenic in vitro and stimulated the expansion of CD8(+) T cells against naturally processed NY-ESO-1 epitopes in the context of three different HLA class I alleles. Polypeptides can thus serve as exogenous Ags that are cross-presented on HLA class I without requiring the action of professional APCs. These findings support innovative vaccination strategies using NY-ESO-1 polypeptides that would circumvent current limitations of HLA class I peptide vaccination, i.e., HLA eligibility criteria and knowledge of epitope, while allowing for facilitated immunogenicity in the presence of helper epitopes.  相似文献   

17.
Chlamydia trachomatis triggers reactive arthritis, a spondyloarthropathy linked to the human major histocompatibility complex molecule HLA-B27, through an unknown mechanism that might involve molecular mimicry between chlamydial and self-derived HLA-B27 ligands. Chlamydia-specific CD8+ T-cells are found in reactive arthritis patients, but the immunogenic epitopes are unknown. A previous screening of the chlamydial genome for putative HLA-B27 ligands predicted multiple peptides that were recognized in vitro by CD8+ T-lymphocytes from patients. Here stable transfectants expressing bacterial fusion proteins in human cells were generated to investigate the endogenous processing and presentation by HLA-B27 of two such epitopes through comparative immunoproteomics of HLA-B27-bound peptide repertoires. A predicted T-cell epitope, from the CT610 gene product, was presented by HLA-B27. This is, to our knowledge, the first endogenously processed epitope involved in HLA-B27-restricted responses against C. trachomatis in reactive arthritis. A second predicted epitope, from the CT634 gene product, was not detected. Instead a non-predicted nonamer from the same protein was identified. Both bacterial peptides showed very high homology with human sequences containing the HLA-B27 binding motif. Thus, expression and intracellular processing of chlamydial proteins into human cells allowed us to identify two bacterial HLA-B27 ligands, including the first endogenous T-cell epitope from C. trachomatis involved in spondyloarthropathy. That human proteins contain sequences mimicking chlamydial T-cell epitopes suggests a basis for an autoimmune component of Chlamydia-induced HLA-B27-associated disease.Chlamydia trachomatis is an obligate intracellular parasite that infects the urogenital epithelium. It is a very common pathogen and one frequently inducing reactive arthritis (ReA)1 (1). Multiple strategies, including down-regulation of major histocompatibility complex (MHC) class I and class II expression (24) and persistence, have been developed by the bacteria to evade the immune system. Yet both CD4+ and CD8+ T-cell responses are activated upon infection (5). In particular, HLA-B27-restricted CD8+ T-lymphocytes are found in patients with Chlamydia-induced ReA (6, 7). The role of these cells in the pathogenesis and evolution of ReA to chronic disease is probably mediated by IFN-γ. Secretion of this cytokine is critical for the protective immunity against Chlamydia (8) because it inhibits the bacterial growth (9). However, this is often insufficient to promote complete clearance of C. trachomatis, and actually IFN-γ-induced depletion of the tryptophan pool induces the differentiation of the metabolically active reticular bodies to persistent forms (10), which sustain chronic infection and ReA. The high prevalence of HLA-B27 among patients with Chlamydia-induced ReA (11), especially in its chronic form, suggests a pathogenetic mechanism based on interactive effects of the bacteria and HLA-B27 that seems unrelated to the capacity of C. trachomatis to infect or replicate into HLA-B27-positive cells (12). One such mechanism could be T-cell-mediated autoimmunity elicited by molecular/antigenic mimicry between chlamydial and self-derived HLA-B27 ligands. Antigenic mimicry between chlamydial and homologous α-myosin-derived peptides is crucial to inducing autoimmune myocarditis in mice (13). Breakdown of cytotoxic T-lymphocyte (CTL) tolerance to HLA-B27 was observed in transgenic rats upon exposure to C. trachomatis (14). Cross-reactivity between HLA-B27-restricted Chlamydia-specific CTL with self-derived HLA-B27 epitopes has not been reported. However, a biochemical basis for it was provided by the finding of an endogenously processed and presented peptide from the DNA primase of C. trachomatis with high homology to a self-derived HLA-B27 ligand (15, 16).Because of the likely involvement of HLA-B27 in the pathogenesis of chronically evolving ReA, the role of CD8+ T-cell responses in the protective immunity against C. trachomatis and the presence of HLA-B27-restricted T-cells in patients with Chlamydia-induced ReA, the identification of relevant chlamydial epitopes becomes crucial to establish the pathogenetic mechanism of this disease. Unfortunately a direct analysis of chlamydial HLA-B27 ligands expressed on infected cells is exceedingly difficult because of their extremely low amounts, which challenge even the most sensitive techniques of MS. In the case of Chlamydia, the situation is further complicated by the down-regulation of MHC class I expression shortly after infection (3, 4). To our knowledge, only one MHC class I ligand was recently identified, in the mouse system, from Chlamydia muridarum-infected cells using state-of-the-art MS techniques (17). Due in part to this difficulty, alternative approaches, such as expression cloning and synthetic peptide epitope mapping (18, 19) or MHC class I tetramer arrays (20), have been used to identify MHC class I-restricted chlamydial T-cell epitopes in mice. In a previous study (6) predictive algorithms were used to screen the whole genome of C. trachomatis for nonamer peptide sequences containing the HLA-B*2705 binding motif and a high probability of being generated by proteasomal cleavage. This led to identifying multiple sequences that, when used as synthetic peptides in vitro, stimulated CD8+ T-cells from patients with Chlamydia-induced ReA. Such cells could also be detected in the synovial fluid of these patients using HLA-B27 tetramers complexed to some of these peptides (7).Although these strategies identify chlamydial sequences that are recognized by CD8+ T-cells they do not prove that these peptides are the endogenously processed epitopes that activated the natural T-cell responses to the bacteria in vivo. Because of the intrinsic cross-reactivity of T-cells (21, 22), it is conceivable that synthetic peptides recognized in vitro may be different from the natural epitopes generated by endogenous processing of the chlamydial proteins that elicit the HLA-B27-restricted T-cell responses in ReA patients. To investigate this issue we focused on two predicted epitopes (6). Stable transfectants expressing the corresponding chlamydial proteins fused to green fluorescent protein (GFP) were generated in a B*2705-positive cell line. The endogenous processing and presentation of the predicted epitopes or other peptides from the same bacterial protein were analyzed by comparative immunoproteomics analysis of the B*2705-bound peptide repertoires from transfected and untransfected cells and sequencing of peptides differentially presented on the bacterial protein transfectant.  相似文献   

18.
Although CD8+ T cells play an important role in the containment of adult HIV-1 replication, their role in infant HIV-1 infection is not as well understood. Impaired HIV-specific CD8+ T cell responses may underlie the persistently high viral loads observed in infants. We examined the frequency and phenotype of infant HIV-specific CD8+ T cells in 7 HIV-infected antiretroviral therapy-naïve infants during the first 2 years of life, using class I HLA tetramers and IFN-γ-ELISPOT. The frequency (0.088–3.9% of CD3+CD8+ cells) and phenotype (CD27+CD28, CD45RA+/−, CD57+/−, HLA-DR+, CD95+) of infant HIV-specific CD8+ T cells were similar to reports in adults undergoing early infection. Unlike adults, at 23–24 months post-infection a high frequency of HIV-specific CD8+ T cells expressed HLA-DR (mean 80%, range 68–85%) and CD95 (mean 88%, range 79–96%), suggesting sustained activation and vulnerability to apoptosis. Despite comparable expansion of HIV-specific CD8+ T cells of a similar phenotype to adults during early infection, infant T cells failed to contain HIV-1 replication, and remained persistently activated and vulnerable to apoptosis during chronic infection.  相似文献   

19.

Background

Tumor-infiltrating CD8+ T cells are correlated with prolonged progression-free and overall survival in epithelial ovarian cancer (EOC). A significant fraction of EOC patients mount autoantibody responses to various tumor antigens, however the relationship between autoantibodies and tumor-infiltrating T cells has not been investigated in EOC or any other human cancer. We hypothesized that autoantibody and T cell responses may be correlated in EOC and directed toward the same antigens.

Methodology and Principal Findings

We obtained matched serum and tumor tissue from 35 patients with high-grade serous ovarian cancer. Serum samples were assessed by ELISA for autoantibodies to the common tumor antigen NY-ESO-1. Tumor tissue was examined by immunohistochemistry for expression of NY-ESO-1, various T cell markers (CD3, CD4, CD8, CD25, FoxP3, TIA-1 and Granzyme B) and other immunological markers (CD20, MHC class I and MHC class II). Lymphocytic infiltrates varied widely among tumors and included cells positive for CD3, CD8, TIA-1, CD25, FoxP3 and CD4. Twenty-six percent (9/35) of patients demonstrated serum IgG autoantibodies to NY-ESO-1, which were positively correlated with expression of NY-ESO-1 antigen by tumor cells (r = 0.57, p = 0.0004). Autoantibodies to NY-ESO-1 were associated with increased tumor-infiltrating CD8+, CD4+ and FoxP3+ cells. In an individual HLA-A2+ patient with autoantibodies to NY-ESO-1, CD8+ T cells isolated from solid tumor and ascites were reactive to NY-ESO-1 by IFN-γ ELISPOT and MHC class I pentamer staining.

Conclusion and Significance

We demonstrate that tumor-specific autoantibodies and tumor-infiltrating T cells are correlated in human cancer and can be directed against the same target antigen. This implies that autoantibodies may collaborate with tumor-infiltrating T cells to influence clinical outcomes in EOC. Furthermore, serological screening methods may prove useful for identifying clinically relevant T cell antigens for immunotherapy.  相似文献   

20.
Naturally acquired immunity to Plasmodium falciparum malaria in malaria holoendemic areas is characterized by the gradual, age-related development of protection against high-density parasitemia and clinical malaria. Animal studies, and less commonly, observations of humans with malaria, suggest that T-cell responses are important in the development and maintenance of this immunity, which is mediated primarily by antibodies that slow repeated cycles of merozoites through erythrocytes. To advance our rather limited knowledge on human T-cell immunity to blood stage malaria infection, we evaluated CD4 and CD8 T-cell effector memory subset responses to the 42 kDa C-terminal fragment of Merozoite Surface Protein 1 (MSP142), a malaria vaccine candidate, by 49 healthy 0.5 to ≥18 year old residents of a holoendemic area in western Kenya. The proportion of individuals with peripheral blood mononuclear cell MSP142 driven IFN-γ ELISPOT responses increased from 20% (2/20) among 0.5–1 year old children to 90% (9/10) of adults ≥18 years (P = 0.01); parallel increases in the magnitude of IFN-γ responses were observed across all age groups (0.5, 1, 2, 5 and ≥18 years, P = 0.001). Less than 1% of total CD4 and CD8 T-cells from both children and adults produced IFN-γ in response to MSP142. However, adults had higher proportions of MSP142 driven IFN-γ secreting CD4 and CD8 effector memory (CD45RA CD62L) T-cells than children (CD4: 50.9% vs. 28.8%, P = 0.036; CD8: 52.1% vs. 18.3%, respectively P = 0.009). In contrast, MSP142 driven IFN-γ secreting naïve-like, transitional (CD45RA+ CD62L+) CD4 and CD8 cells were the predominant T-cell subset among children with significantly fewer of these cells in adults (CD4: 34.9% vs. 5.1%, P = 0.002; CD8: 47.0% vs. 20.5%, respectively, P = 0.030). These data support the concept that meaningful age-related differences exist in the quality of T-cell immunity to malaria antigens such as MSP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号