首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of experiments were conducted to evaluate the effect of oxamyl in combination with the soil fumigants 1,3-D, metam sodium and methyl bromide on nematode damage and fruit yield in vegetables. Experiments were conducted in Tifton, GA, USA over five seasons, between 2000 and 2002, using four different vegetables: squash (Cucurbita pepo), cucumber (Cucumis sativus), pepper (Capsicum annuum) and eggplant (Solanum melongend). In the eggplant experiment, insect populations were monitored. Soil fumigation alone, irrespective of application method or formulation, gave acceptable control of root-knot nematode in all experiments, except in the spring 2001 pepper experiment. Oxamyl by itself did not provide control of root-knot nematode (Meloidogyne incognita), but insect populations on eggplant were reduced. Out of three experiments that included oxamyl by itself, root galling caused by Meloidogyne spp. was reduced only on eggplant when nematode pressure was low (five nematodes per 150 cm3 soil). When oxamyl was applied in combination with pre-plant soil fumigation, small but consistent reductions in root galling were observed. Greatest reductions in galling due to oxamyl were found when fumigation provided less than optimal nematode control. The timing of application of oxamyl did not have much impact on nematode infection, but applications early in the season, preferably starting at planting, appear to be beneficial. Stubby root nematode (Paratrichodorus spp.) populations were low and variable in most experiments, but neither fumigation nor post-plant nematicide applications seemed to have any effect on soil populations at harvest. Crop yields were often significantly greater when oxamyl followed fumigation, as compared to fumigation only, which could be due to a reduction in root-knot nematode damage (and in the case of eggplant also reduced foliar damage by insects), and/or to a carbamate growth stimulant response. These experiments indicate the potential of oxamyl to reduce root-knot nematode infection and increase yields of vegetables when combined with soil fumigation by 1,3-D and/or metam sodium. More research is required to understand the effect of crop type, pest pressure, preceding fumigant (1,3-D or metam sodium) and injection timing of oxamyl.  相似文献   

2.
A 2-year study was conducted in which three treatment tactics of oxamyl (at planting application, application every 2 weeks, and rescue applications, as determined by crop symptoms) were compared to fumigant treatments with methyl bromide, 1,3-dichloropropene (1,3-D), and 1,3-D plus chloropicrin for management of Meloidogyne spp. In 2002, treatments that included 1,3-D produced higher yields as determined both by number and weight of marketable fruit. All treatment tactics relying solely on oxamyl, at planting, scheduled treatments, and rescue, were not different from untreated controls for both marketable yield and number of fruit. Gall ratings in 2002 were lowest for 1,3-D at the 112-liters/ha rate, followed by 1,3-D at 84 liters/ha with and without oxamyl. All treatments of oxamyl, except when combined with 1,3-D, had gall ratings not different from untreated plots. In 2004, treatments of methyl bromide and 1,3-D plus chloropicrin had the highest total number of both marketable fruit and highest marketable yields. All treatment strategies relying solely on oxamyl had yields equivalent to the untreated controls. Mean root-gall ratings were lowest for methyl bromide plus chloropicrin and 1,3-D plus chloropicrin treatments. Root-gall ratings for all treatment tactics relying solely on oxamyl were not different from untreated controls.  相似文献   

3.
Pasteuria penetrans isolate P-20 has been attributed as the cause of soil suppressiveness to peanut root-knot nematode in Florida. In this study, P. penetrans was transferred from a suppressive site to a new site and established by growing susceptible hosts to the peanut root-knot nematode during both summer and winter seasons. When two soil fumigants, 1,3-dichloropropene (1,3-D) and chloropicrin, were applied broadcast at the rate of 168 liters/ha and 263 kg/ha, respectively, the bacterium was not adversely affected by 1,3-D but was adversely affected by chloropicrin. In autumn 2005, after the harvest of the second peanut crop, the greatest number of J2 was recorded in the chloropicrin-treated plots, followed by the non-fumigated plots and 1,3-D-fumigated plots. The percentage J2 encumbered with endospores, endospores per J2 and percentage of P. penetrans-infected females were greatest in the non-fumigated plots, followed by 1,3-D- and chloropicrin-fumigated plots. This study demonstrates that P. penetrans can be transferred from a suppressive site to a new site and increased to suppressive densities against the peanut root-knot nematode.  相似文献   

4.
Alternatives to reduce or modify nematicide use for minimizing groundwater contamination in Easter lily were explored in two field trials. Alternatives to standard 1,3-dichloropropene (1,3-D) plus phorate injection in the first trial were: (i) delaying applications until after winter rains, (ii) removing roots from planting stock, (iii) 1,3-D via drip irrigation, (iv) a chitin-urea soil amendment, (v) the registered insecticide disulfoton, and (vi) several nonregistered nematicides. None of the treatments equaled the standard treatment. In the second trial, potential benefits of adding a systemic nematicide, oxamyl (OX), or a fungicide, metalaxyl (MX), to the standard treatment were explored. Preplant drip irrigation applications of metam sodium (MS), sodium tetrathiocarbonate (ST), and emulsifiable 1,3-D were evaluated alone and in combination with postplant applications of OX and MX. Several drip-applied treatments performed comparably to the standard treatment with respect to the most important criteria of crop quality, bulb circumference. Metam-sodium in combination with either or both OX and MX, 1,3-D plus OX and MX, and ST plus OX and MX provided the best results.  相似文献   

5.
Corky ringspot disease (CRS) of potato produces necrotic areas in tubers that are considered quality defects that can lead to crop rejection. CRS is caused by tobacco rattle virus that is vectored by stubby-root nematodes (Paratrichodorus spp., Trichodorus spp.) at very low population densities, making disease management difficult and expensive. Fumigation with metam sodium (MS) is a common practice to control soil-borne fungi and increase potato yield. MS is generally applied in water via chemigation (water-run, WR) but is ineffective at controlling CRS when WR-applied, even at high rates. Therefore, WR MS is often used in combination with 1,3-dichloropropene (1,3-D), aldicarb or oxamyl to attain adequate CRS control. Between 1996 and 2000, fields with a history of CRS were treated with WR MS, shank-injected MS, and/or 1,3-D, and tubers were evaluated for symptoms of CRS. Shank injection of MS (SH MS) at depths of 41 cm, 15 and 30 cm, or 15, 30 and 45 cm controlled CRS over 3 years of testing. All rates of 280 liters/ha or greater were effective. Shank injection of metam potassium (MP) at rates of 448 liters/ha was also effective. 1,3-D controlled CRS alone or in combination with WR or SH MS. Proper shank application of MS or MP may adequately control CRS without the additional cost of other nematicides at low (<10 P. allius/250 g soil) to moderate (10 to 30 P. allius/250 g soil) populations of the nematode vector. Although SH MS was superior to WR MS, additional research is necessary to determine if this practice would be sufficient at higher CRS disease pressure or if addition of other nematicides would be necessary.  相似文献   

6.
Fluensulfone is a new nematicide in the flouroalkenyl chemical group. A field experiment was conducted in 2012 and 2013 to evaluate the efficacy of various application methods of fluensulfone for control of Meloidogyne spp. in cucumber (Cucumis sativus). Treatments of fluensulfone (3.0 kg a.i./ha) were applied either as preplant incorporation (PPI) or via different drip irrigation methods: drip without pulse irrigation (Drip NP), pulse irrigation 1 hr after treatment (Drip +1P), and treatment at the same time as pulse irrigation (Drip =P). The experiment had eight replications per treatment and also included a PPI treatment of oxamyl (22.5 kg a.i./ha) and a nontreated control. Compared to the control, neither the oxamyl nor the fluensulfone PPI treatments reduced root galling by Meloidogyne spp. in cucumber. Among the drip treatments, Drip NP and Drip +1P reduced root galling compared to the control. Cucumber yield was greater in all fluensulfone treatments than in the control. In a growth-chamber experiment, the systemic activity and phytotoxicity of fluensulfone were also evaluated on tomato (Solanum lycopersicum), eggplant (Solanum melongena), cucumber, and squash (Curcurbita pepo). At the seedling stage, foliage of each crop was sprayed with fluensulfone at 3, 6, and 12 g a.i./liter, oxamyl at 4.8 g a.i./liter, or water (nontreated control). Each plant was inoculated with Meloidogyne incognita juveniles 2 d after treatment. There were six replications per treatment and the experiment was conducted twice. Foliar applications of fluensulfone reduced plant vigor and dry weight of eggplant and tomato, but not cucumber or squash; application of oxamyl had no effect on the vigor or weight of any of the crops. Typically, only the highest rate of fluensulfone was phytotoxic to eggplant and tomato. Tomato was the only crop tested in which there was a reduction in the number of nematodes or galls when fluensulfone or oxamyl was applied to the foliage compared to the nontreated control. This study demonstrates that control of Meloidogyne spp. may be obtained by drip and foliar applications of fluensulfone; however, the systemic activity of fluensulfone is crop specific and there is a risk of phytotoxicity with foliar applications.  相似文献   

7.
The effects of aldicarb, oxamyl, 1,3-D, and plastic mulch (solarization) on soil population densities of the golden nematode (GN) Globodera rostochiensis was assessed in field and microplot experiments with different soil types. Oxamyl was evaluated in both soil and foliar treatments, whereas aldicarb, 1,3-D, and solarization were applied only to soil. Soil applications of aldicarb and oxamyl resulted in reduced nematode populations after GN-susceptible potatoes in plots with initial population densities (Pi) of > 20 and 7.5 eggs/cm³ soil, respectively, but nematode populations increased in treated soil when Pi were less than 20 and 7.5 eggs/cm³soil. In clay loam field plots with Pi of 19-76 eggs/cm³ soil, nematode densities increased even with repeated foliar applications of oxamyl, whereas nematode populations at Pi greater than 76 eggs/cm³ soil were reduced by foliar oxamyl. Treatment with 1,3-D or solarization, singly or in combination, reduced GN soil population densities regardless of soil type or Pi. Temperatures lethal to GN were achieved 5 cm deep under clear plastic but not 10 or 15 cm deep.  相似文献   

8.
Metam sodium (MS) is often applied to potato fields via sprinkler irrigation systems (water-run, WR) to reduce propagules of soil-borne pathogenic fungi, particularly Verticillium dahliae, to prevent yield loss from potato early dying disease. However, this procedure has not been effective for controlling quality defects in tubers caused by Columbia root-knot nematode (Meloidogyne chitwoodi). In five trials from 1996 to 2001, application of MS by soil shank injection (SH) provided better control and tuber quality than that generally obtained by WR MS, in three of five trials. Results were similar when SH MS was injected at one (41–45 cm), two (15 and 30 cm) or three (15, 30 and 45 cm) depths. In the two trials where SH metam potassium was tested, culls were reduced to 3% and 0% and were equivalent to those resulting from a similar rate in kg a.i./ha of SH MS. A shank-injected tank mix of MS plus ethoprop EC and SH MS plus in-season chemigation applications of oxamyl provided acceptable control in trials where SH MS alone was inadequate. In-furrow application of aldicarb at planting following SH MS did not appear to increase performance. Most consistent control (0–2% culled tubers in five trials) occurred when SH MS at 280 liters/ha was used together with 1,3- dichloropropene (140 liters/ha), applied simultaneously or sequentially. This was similar to combinations of 1,3-D and WR MS, but SH MS may be preferred under certain conditions.  相似文献   

9.
The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) ''Lemondrop L'' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) ''Classic'' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: ''Hale'' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, ''SX- 17'' sorghum-sudangrass (Sorghum bicolor x S. sudanense), ''Kirby'' soybean (Glycine max), and ''Clemson Spineless'' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P ≤ 0.05) following sorghum-sudangrass than after any of the other treatments except fallow. Yield of eggplant was greater (P ≤ 0.05) following castor, sesame, or American jointvetch than following okra or fallow. Several of the rotation crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.  相似文献   

10.
The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P ≤ 0.05) numbers of M. arenaria juveniles on most sampling dates. Soybean, horsebean, and sesame rotations were less effective in suppressing nematodes. Yield of squash was greater (P ≤ 0.05) following castor, cotton, velvetbean, and crotalaria than following peanut. Compared to the peanut rotation, yield of eggplant was enhanced (P ≤ 0.10) following castor, crotalaria, hairy indigo, American jointvetch, and sorghum-sudangrass. Several of these rotation crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.  相似文献   

11.
Almost no single commercially available or registered compound is able to replace the broad spectrum activity of methyl bromide. However, combinations of for long known fumigants or their generators, showing good activity in the control of specific groups of soil borne diseases or pests, show interesting broad spectrum activity and even synergism. Well-known combinations are 1,3-dichloropropene (1,3-D) and chloropicrin, applied by injection or through irrigation lines. A few decades ago, combination products containing 1,3-D and methyl isothiocyanate (MITC) were developed and commercialized but were not Longer supported. As 1,3-D is an excellent nematicide with other target groups depending on contact time and tarping, and dazomet as a MITC generator shows fungicidal, nematicidal, insecticidal and herbicidal activities, studies with combinations of both were started again. Laboratory trials with different combinations of 1,3-D and Basamid (97 % dazomet) in soil columns showed interesting results both with Basamid solved in 1,3-D, although limited by temperature, and with simultaneously applied products, even at half dose of each, or even tess. In a further stage, small greenhouse trials were performed with tomato and lettuce crop and could confirm synergistic activity through the evaluation of crop stand and harvest results. Other trial work was performed in collaboration between Certis Europe branches and local research groups in both Italy and Spain. There again it was demonstrated that the combination of 1,3-D (injectable as well as emulsifiable formulations) with Basamid are able to control different phytosanitary problems in different crops. In parallel with the above mentioned trial work, emphasis is also made on careful and appropriate tarping of the soil, preferentially by improved gastight barrier film. The latter allows dose reduction as well as improvement of the fumigation performance. Barrier properties of commercially available fumigation film are now studied for both 1,3-D and MITC. Finally, it is emphasized that appropriate application systems and machinery need more attention to achieve good results with this type of fumigants, i.e. less volatile and with less good diffusion capacity as compared to methyl bromide.  相似文献   

12.
Soil-incorporated rotation/green manure crops were evaluated for management of potato early dying caused by Verticillium dahliae and Pratylenchus penetrans. After two years of rotation/green manure and a subsequent potato crop, P. penetrans numbers were less after ‘Saia’ oat/‘Polynema’ marigold, ‘Triple S’ sorghum-sudangrass, or ‘Garry’ oat than ‘Superior’ potato or ‘Humus’ rapeseed. The area under the disease progress curve (AUDPC) for early dying was lowest after Saia oat/marigold, and tuber yields were greater than continuous potato after all crops except sorghum-sudangrass. Saia oat/marigold crops resulted in the greatest tuber yields. After one year of rotation/green manure, a marigold crop increased tuber yields and reduced AUDPC and P. penetrans. In the second potato crop after a single year of rotation, plots previously planted to marigolds had reduced P. penetrans densities and AUDPC and increased tuber yield. Rapeseed supported more P. penetrans than potato, but had greater yields. After two years of rotation/green manure crops and a subsequent potato crop, continuous potato had the highest AUDPC and lowest tuber weight. Rotation with Saia oats (2 yr) and Rudbeckia hirta (1 yr) reduced P. penetrans and increased tuber yields. AUDPC was lowest after R. hirta. Two years of sorghum-sudangrass did not affect P. penetrans, tuber yield or AUDPC. These results demonstrate that P. penetrans may be reduced by one or two years of rotation to non-host or antagonistic plants such as Saia oat, Polynema marigold, or R. hirta and that nematode control may reduce the severity of potato early dying.  相似文献   

13.
Soil application of DBCP (l,2-dibromo-3-chloropropane) and foliar applications of oxamyl (methyl N'',N''-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate) were compared for control of Tylenchulus semipenetrans in a grapefruit (Citrus paradisi) orchard, DBCP reduced nematode populations and increased fruit growth rate, fruit size at harvest, and yield compared to the untreated controls in the 2 years following treatments. Foliar applications of oxamyl reduced nematode populations and increased fruit growth rate slightly the first year, but not in the second. Foliar applications of oxamyl did not improve control attained by DBCP alone. Soil application of aldicarb [2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime] or DBCP to an orange (C. sinensis) orchard reduced T. semipenetrans populations in the 3 years tested and increased yield in 1 of 3 years. Aldicarb treatment reduced fruit damage caused by the citrus rust mite, Phyllocoptruta oleivora. Aldicarb, applied at 5.7 or 11.4 kg/ha, by disk incorporation or chisel injection, was equally effective in controlling nematodes, improving yields, fruit size, and external quality. In a grapefruit orchard, chisel-applied aldicarb reduced nematode populations and rust mite damage and increased yields in both years and increased fruit size in one year. The 11.4-kg/ha rate was slightly more effective than the 5.7-kg/ha rate. Aldicarb appears to be an adequate substitute for DBCP for nematode control in Texas citrus orchards and well-suited to an overall pest management system for Texas citrus.  相似文献   

14.
A 3-year field trial near Kunia, Oahu, Hawaii, was conducted to evaluate four nematicide treatments for efficacy against Rotylenchulus reniformis in drip-irrigated pineapple (Ananas comosus L. (Merr.)). The treatments were (A) preplant fumigation with 1,3-dichloropropene (1,3-D) (336 liter/ ha) and postplant drip application of fenamiphos (3.4 kg/ha) with restricted irrigation, (B) preplant 1,3-D only, weekly irrigation, (C) 1,3-D fenamiphos, weekly irrigation, and (D) postplant fenamiphos only, weekly irrigation. Fenamiphos was applied at 3-month intervals for 1 year after planting in three treatments. Although nematode populations increased in all treatments 1 year after planting, no differences in fruit yield were detected among treatments in the first (plant crop) harvest 19 months after planting. In the second (ratoon) crop (33 months after planting) significant yield differences, larger fruit size, and greater root biomass were obtained in the dual nematicide treatments. Root biomass increased continuously throughout the crop cycle, was greatest near the drip line, and showed a shallow depth distribution (30-40 cm). Rotylenchulus reniformis populations and fenamiphos concentrations were negatively correlated in soil profiles taken 13 months after planting. In the absence of postplant fenamiphos applications, nematode numbers were positively correlated with root biomass.  相似文献   

15.
Field tests were conducted to determine if differences in response to nematicide application (i.e., root-knot nematode (RKN) populations, cotton yield, and profitability) occurred among RKN management zones (MZ). The MZ were delineated using fuzzy clustering of five terrain (TR) and edaphic (ED) field features related to soil texture: apparent soil electrical conductivity shallow (ECa-shallow) and deep (ECa-deep), elevation (EL), slope (SL), and changes in bare soil reflectance. Zones with lowest mean values of ECa- shallow, ECa- deep, NDVI, and SL were designated as at greater risk for high RKN levels. Nematicide-treated plots (4 rows wide and 30 m long) were established in a randomized complete block design within each zone, but the number of replications in each zone varied from four to six depending on the size of the zone.The nematicides aldicarb (Temik 15 G) and 1,3-dichloropropene (1,3-D,Telone II) were applied at two rates (0.51 and 1.0 kg a.i./ha for aldicarb, and 33.1 and 66.2 kg a.i./ha for 1,3-D) to RKN MZ in commercial fields between 2007 and 2009. A consolidated analysis over the entire season showed that regardless of the zone, there were not differences between aldicarb rates and 1,3-D rates. The result across zones showed that 1,3-D provided better RKN control than did aldicarb in zones with low ECa values (high RKN risk zones exhibiting more coarse-textured sandy soils). In contrast, in low risk zones with relatively higher ECa values (heavier textured soil), the effects of 1,3-D and aldicarb were equal and application of any of the treatments provided sufficient control. In low RKN risk zones, a farmer would often have lost money if a high rate of 1,3-D was applied. This study showed that the effect of nematicide type and rate on RKN control and cotton yield varied across management zones (MZ) with the most expensive treatment likely to provide economic benefit only in zones with coarser soil texture. This study demonstrates the value of site specific application of nematicides based on management zones, although this approach might not be economically beneficial in fields with little variability in soil texture.  相似文献   

16.
Six general-purpose fumigants and one fungicide were applied by different methods and evaluated for control of nematode-fungus complexes on cabbage grown for transplant production. All chemicals reduced populations of nematodes and soil-borne fungi but varied greatly in effectiveness. Methyl bromide + chloropicrin (98% methyl bromide + 2% chloropicrin) (MBR-CP gas), DD + methyl isothiocyanate (DD-MENCS), methyl bromide + chloropicrin (67% methyl bromide + 31.75% cbloropicrin) (MBR-CP gel), and chloropicrin were more effective than sodium methyl dithiocarbamate (metham), pentachloronitrobenzene (PCNB), and potassium N-hydroxy-methyl-N-methyldithiocarbamate (Bunema) against Meloidogyne incognita. Populations of Pythium spp. and Fusarium spp. were reduced markedly by all treatments except PCNB. Plant growth, uniformity, and yield were greater when nematodes and fungi were controlled.  相似文献   

17.
A dynamic model of nematode populations under a crop rotation that includes both host and nonhost crops is developed and used to conceptualize the problem of economic control. The steady state of the dynamic system is used to devise an approximately optimal decision policy, which is then applied to cyst nematode (Heterodera schachtii) control in a rotation of sugarbeet with nonhost crops. Long-run economic returns from this approximately optimal decision rule are compared with results from solution of the exact dynamic optimization model. The simple decision rule based on the steady state provides long-run average returns that are similar to the fully optimal solution. For sugarbeet and H. schachtii, the simplified rule can be calculated by maximizing a relatively simple algebraic expression with respect to the number of years in the sequence of nonhost crops. Maximization is easy because only integers are of interest and the number of years in nonhost crops is typically small. Solution of this problem indirectly yields an approximation to the optimal dynamic economic threshold density of nematodes in the soil. The decision rule requires knowledge of annual nematode population change under host and nonhost crops, and the relationship between crop yield and nematode population density.  相似文献   

18.
Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato–cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased root galling by 91%, 73%, and 97%, respectively, compared to the untreated control. Tomato plots from the spring were divided into split plots for the fall where the main plots were the spring treatment and the subplots were cucumber either treated with fluensulfone (3.0 kg a.i./ha. via drip irrigation) or left untreated. The fall application of fluensulfone improved cucumber vigor and reduced gall ratings compared to untreated subplots. Fluensulfone reduced damage from root-knot nematodes when applied to the first crop as well as provided additional protection to the second crop when it was applied through a drip system.  相似文献   

19.
The two species of the potato cyst nematodes (PCN) Globodera pallida and G rostochiensis are the most problematic pests of the potato crop in the UK. There are no commercially available cultivars with full resistance to G. pallida and both crop rotation and granular nematicides are less effective at controlling this species than G. rostochiensis. In situations of very high PCN levels it may be possible to reduce populations and yield losses by using an autumn application of the soil fumigant 1,3-dichloropropene (1,3-D) followed by a spring application of a granular nematicide. Two field experiments were done to look at the integration of methods for the control of PCN. The Common Field experiment (G. rostochiensis infested) compared the use of 1,3-D with the granular nematicides aldicarb, oxamyl and fosthiazate when growing the susceptible cv. Estima. The Four Gates experiment (infested with both PCN species but mainly G rostochiensis) compared the performance of cv. Santé (partially resistant to G. pallida, fully resistant to G. rostochiensis) with that of the susceptible cv. Estima when treated with 1,3-D and oxamyl at full and half-rates. The results of the experiments show that an integrated approach to nematode control on heavily infested sites, including granular and fumigant nematicides and cultivar resistance, can lead to significant decreases in nematode population densities and reduce yield losses. An economic evaluation of the experiments modelled the gross margins from the different nematicide treatments. In Common Field, the highest gross margins were achieved with the combined use of fumigant and granular nematicides. In Four Gates, there was a clear economic benefit for both cultivars from the use of 1,3-D. In this experiment, oxamyl was of economic value to Estima but not to Sante and full-rate oxamyl was of more benefit than half-rate to Estima.  相似文献   

20.
The phase-out of methyl bromide due to concerns regarding ozone depletion in the stratosphere has imposed the need of developing alternatives less aggressive to the environment. The use of 1,3-dichloropropene (1,3-D) and chloropicrin (Pic) has extended in the last years, and has become essential to maintain strawberry production in Southern Spain, the main producer within the EU. However, their uncertain effects on the environment have become a new obstacle for their future use, and scientific evaluation of their toxicity is necessary to assess their impact on the environment. In this paper, we use the nematode assemblage as indicator of the effects of 1,3-D, Pic and 1,3-D + Pic on non-target soil fauna, and to infer their effects on soil food web functioning in two commercial strawberry farms in Southern Spain. Although affected, the abundance of bacterial-feeding nematodes did not differ among treatments due to compensatory growth of opportunistic nematodes. Fungal-feeding nematodes were strongly reduced by the fumigants, probably due to direct fumigants toxicity and to alterations on the fungal decomposition channel. Taxa richness and soil food web indices were also affected by the treatments. The ratio fungal to bacterial-feeding nematode abundances is proposed as the best indicator of the short and medium term effects of fumigants on non-target soil organisms. Implications of such findings on soil food web functioning and recovery are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号