首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Dietary fats are converted into chylomicron triacylglycerols via the 2-monoacylglycerol and phosphatidic acid pathways of acylglycerol formation. In view of the known positional and fatty acid specificity of the acyltransferases, the triacylglycerol structures resulting from the two pathways would be expected to differ, but this has not been demonstrated. We have performed stereospecific analyses on the chylomicron triacylglycerols from rats fed menhaden oil and the corresponding fatty acid alkyl esters, which would be expected to be assimilated via the monoacylglycerol and the phosphatidic acid pathways, respectively. The results show a remarkable similarity between the two triacylglycerol types in the fatty acid composition of the sn-1 and sn-3 positions, along with marked differences in the composition of the sn-2 positions. The triacylglycerols from rats fed oil retained about 85% of the original fatty acids in the sn-2 position, including a high proportion of the long chain polyunsaturates (e.g., 5-7% 20:5 and 4-5% 22:6). The triacylglycerols from rats fed the alkyl ester contained large amounts of endogenous fatty acids in the sn-2 position (e.g., 18% 16:1, 14% 18:1, 14% 18:2, and 2.5% 20:4), which approximated the composition of the sn-2 position of the presumed phosphatidic acid intermediates. The sn-1 position contained a much higher proportion of polyunsatured fatty acids (e.g., 12-13% 20:5, 5-6% 22:6) than the sn-2 position (e.g. 2-3% 20:5, 0-0.6% 22:6) of triacylglycerols from rats fed the ester. We conclude that the chylomicron triacylglycerols arising via the 2-monoacylglycerol and the phosphatidic acid pathways differ mainly in the composition of the fatty acids in the sn-2 position. The similarity in the acids of the sn-1 and sn-3 positions of the chylomicron triacylglycerols from rats fed oil or ester is consistent with a hydrolysis of the acylglycerol products of the phosphatidic acid pathway to 2-monoacylglycerols prior to reconversion to triacylglycerols via the monoacylglycerol pathway and secretion as chylomicrons.  相似文献   

2.
The effect of puromycin on phosphatidylcholine and triacylglycerol synthesis was studied in isolated cells of rat intestinal mucosa using radioactive palmitate, glycerol, 2-hexadecylglycerol, and lysophosphatidylcholine as markers. Puromycin caused a 60–65% inhibition of phosphatidylcholine biosynthesis but did not affect the formation of triacylglycerols. Under comparable conditions protein synthesis was inhibited 90–95% and glycoprotein synthesis 60–70%. The utilization of the various lipid precursors indicated that puromycin inhibited the biosynthesis of phosphatidylcholine via both the CDP-choline and the lysophosphatidylcholine pathways, without interfering with triacylglycerol synthesis from either phosphatidic acid or monoacylglycerol precursors. Since both phosphatidylcholines and proteins are involved in the assembly of chylomicrons, it is suggested that the effect of puromycin on chylomicron formation could be due to an inhibition of the biosynthesis of any one or all three of the membrane components: proteins, glycoproteins, and phosphatidylcholines.  相似文献   

3.
This study explored further the hypothesis that intestinal cells have two pathways for producing large triacylglycerol-rich lipoprotein particles. The hydrophobic surfactant Pluronic L-81 (L-81) inhibits formation of chylomicrons (containing triacylglycerol synthesized from dietary fatty acids and monoacylglycerol, through the monoacylglycerol pathway), but not formation of very-low-density lipoproteins. L-81 does not inhibit lymphatic lipid transport during infusion of egg phosphatidylcholine, whose fatty acid is processed through the alpha-glycerol phosphate pathway and is transported in lymph in very-low-density lipoproteins. Thus, the first part of this study tested whether L-81 cannot inhibit the alpha-glycerol phosphate pathway, and thus L-81 can only affect chylomicron lipid secretion. Intestinal lymph fistula rats were infused with a lipid emulsion containing [1-14C]oleic acid, but no monoacylglycerol, to ensure that the oleic acid will be channeled to the alpha-glycerol phosphate pathway. Experimental rats received 1 mg/h of L-81 in their emulsion whereas control rats lacked L-81. Lymphatic triacylglycerol output, measured both chemically and radioactively, was markedly suppressed in the experimental rats as compared to the controls. Thus, these data indicate that the reason why lipid transport was unaffected by L-81 when egg phosphatidylcholine was infused was not because of the pathway used for the resynthesis of triacylglycerol from phosphatidylcholine. In the second part of this study, we measured the appearance time for chylomicron (in control rats) and for very-low-density lipoprotein (in L-81-treated rats). The appearance time is defined as the time between placement of radioactive fatty acid into the intestinal lumen and the appearance of radioactive lipid in the central lacteal. The average appearance time for the control rats was 10.8 min, which was significantly shorter than the 16.2 min in the L-81-treated experimental rats. This difference in appearance time further supports the hypothesis that chylomicron and very-low-density lipoprotein are packaged separately in the enterocytes and only the formation of chylomicron is inhibited by L-81.  相似文献   

4.
Lipid emulsions were prepared with compositions similar to the triacylglycerol-rich plasma lipoproteins, but also incorporating added small amounts of monoacylglycerols. Control emulsions without monoacylglycerol were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. The emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the bloodstream, with the removal rates of triacylglycerols faster than those of cholesteryl esters. Much of the removed cholesteryl ester was found in the liver, but only a small fraction of the triacylglycerol, consistent with hepatic uptake of the triacylglycerol-depleted remnants of the injected emulsion. Emulsions incorporating added monooleoylglycerol or stearic acid were metabolized similarly. Added 1- or 2-monostearoylglycerol had no effect on triacylglycerol removal from plasma, but the removal rate of cholesteryl esters was decreased and less cholesteryl ester was found in the liver. These effects are similar to those recently described when emulsions and chylomicrons contained triacylglycerols with a saturated acyl chain at the glycerol 2-position, suggesting that saturated monoacylglycerol produced by the action of lipoprotein lipase may cause triacylglycerol-depleted remnant particles to remain in the plasma instead of being rapidly taken up by the liver.  相似文献   

5.
Male rats with thoracic duct cannulae were intubated with mustard-seed oil or the corresponding fatty acid methyl esters and the lymph was collected over 0-24 h. The chylomicron and very low density lipoprotein fractions were obtained by conventional ultracentrifugation. The triacylglycerols and glycerophospholipids were isolated and the positional distribution and molecular association of fatty acids were determined by stereospecific and chromatographic methods. The oleic, linoleic, and linolenic acids were recovered in the lymph in the proportion in which they occurred in the fat fed, while eicosenoic, erucic, and lignoceric acids were rejected to about the same extent by the two pathways of intestinal triacylglycerol biosynthesis. It is shown that the lymph triacylglycerols arising via the monoacylglycerol or the phosphatidic acid pathway possess structures that are closely similar to each other and to that of the original mustard-seed oil. It is proposed that this is a result of comparable fatty acid and positional specificity of the acyltransferases associated with the acylglycerol synthesis in the animal and plant tissues and the wide range of fatty acid chain lengths in the mustard-seed oil.  相似文献   

6.
In order to explore the in vivo function of hepatic lipase, rats were injected with goat anti-rat hepatic lipase serum which produced a complete and specific inhibition of heparin-releasable hepatic lipase. In the fasting rats, protein, phospholipid and free cholesterol expressed as either mass or percent weight increased significantly in low-density lipoprotein (LDL) and high-density lipoprotein 2 (HDL-2) fractions. These three constituents were not affected in the VLDL and HDL-3 lipoproteins. In the fat-loaded (1 ml corn oil) rat, 6 h post inhibition of hepatic lipase triacylglycerol, phospholipid and free cholesterol concentrations in the d less than 1.006 fraction were 2.5-fold higher in the inhibited animals than in the control rats. The composition of the d less than 1.006 fraction was also affected. Expressed as percent mass, protein was lower (5.2 +/- 1.2 vs. 10.3 +/- 1.5, P less than 0.001) as was cholesteryl ester (1.7 +/- 0.7 vs. 2.6 +/- 0.4, P less than 0.01); triacylglycerol was elevated (77.2 +/- 4.0 vs. 72.6 +/- 2.4, P less than 0.025), as was free cholesterol (3.0 +/- 0.6 vs. 2.4 +/- 0.2, P less than 0.025). Overall, inhibition lowered the ratio of surface-to-core constituents suggesting a larger mean particle diameter. SDS-polyacrylamide gel electrophoresis showed the intermediate- and low-density lipoprotein from treated rats to be significantly enriched in apolipoprotein B-48. In the LDL fraction, apolipoprotein B-48 accounted for 62 +/- 14% of the total apolipoprotein B in the inhibited rats, vs. 12 +/- 2% in the control rats. The above results support the previously described in vivo function of hepatic lipase as a phospholipase. In addition, the results demonstrate a role of hepatic lipase in the catabolism of chylomicrons. Since removal of apolipoprotein B-48-containing lipoproteins is dependent upon apolipoprotein E, their appearance in the LDL fraction implies a masking of apolipoprotein E-binding determinants.  相似文献   

7.
[3H]Triacylglycerol-labelled chylomicrons were isolated from intestinal lymph, obtained from rats made hypolipidaemic by treatment with pharmacological amounts of 17 alpha-ethynyloestradiol. Oestrogen treatment results in a large reduction in the content of apolipoproteins (apo) E and C of lymph chylomicrons. Upon incubation in vitro with freshly isolated parenchymal and non-parenchymal cells the apo E-, apo C-poor chylomicrons became readily cell-associated. With increasing chylomicron concentrations this cell-association was saturable and half-maximal cell-association was achieved at about 0.55 mg of triacylglycerol/ml. The cell-association was time- and temperature-dependent. A more than 90% inhibition of the cell-association of the [3H]triacylglycerol moiety was observed with both parenchymal and non-parenchymal cells when pure apo C-III (12.6 micrograms/mg of triacylglycerol) was incorporated into the chylomicrons. These data indicate that apo E-, apo C-poor chylomicrons are bound to both parenchymal and non-parenchymal liver cells at a high-affinity site of limited capacity and that binding to this site is strongly inhibited by apo C-III. With apo C-III-enriched chylomicrons simultaneous determination of the cell-association of the 125I-apo C-III and the [3H]triacylglycerol moiety indicated that more 125I-apo C-III becomes associated to the cells than expected on the basis of [3H]triacylglycerol radioactivity measurements. It is suggested that upon cell-association of apo C-III its binding to the chylomicron particles is lost. Consequently the occupation of the cellular recognition site by apo C-III prevents further chylomicron binding and thus leads to a decrease of the cell-association level of the [3H]triacylglycerol moiety. Apo E enrichment of the chylomicrons led to an increased cell-association rate with parenchymal cells and to a marked increase of the cell-association level with non-parenchymal cells. The cell-association of the apo E radioactivity followed closely the [3H]triacylglycerol radioactivity, indicating that the particle-apo E complex is bound as a unity. The apo E effects were opposed by apo C-III. With apo E-, apo C-III-enriched chylomicrons more 125I-apo E became associated with the cells than could be expected on the basis of the [3H]triacylglycerol measurements. It is concluded that apo C-III can weaken the interaction of apo E with the chylomicrons leading to the cell-association of free apo E. It appears that subtle changes in the apo E and/or apo C-III content of chylomicrons can influence the interaction with both parenchymal and non-parenchymal liver cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The molecular specificity of the biosynthesis of triacylglycerols by rat intestinal mucosa was examined by means of radioactive and mass tracers, and thin-layer chromatography with silver nitrate and gas-liquid chromatography with radioactivity monitoring. Bile salt micelles of alternately labeled monoacylglycerols and free fatty acids were incubated with everted sacs of intestinal mucosa for various periods of time and the triacylglycerols isolated by solvent extraction and thin-layer chromatography. Analyses of the molecular species of the triacylglycerols labeled from monoacylglycerols showed that the 2-monoacylglycerol pathway was responsible for the biosynthesis of a maximum of 90% and the X-1-monoacylglycerol pathway for about 10% of the total radioactive triacylglycerols. Detailed analyses of the molecular species of triacylglycerols labeled fro free fatty acids showed that the phosphatidic acid pathway contributed a minimum of 20-30% of the total labeled triacylglycerol formed. There was a preferential utilization in triacylglycerol biosynthesis of the more unsaturated diacylglycerols arising from the monoacylglycerol pathway and of the more saturated diacylglycerols originating from the phosphatidic acid pathway. The above experiments do not allow a demonstration of the utilization of the sn-2,3-diacylglycerols in triacylglycerol biosynthesis but are not inconsistent with it.  相似文献   

9.
The glycerolipid composition of pea (Pisum sativum L.) root plastids and their capacity to synthesize glycerolipids from [UL-14C]glycerol-3-phosphate were determined. Pea root plastids primarily consist of monogalactosyldiacylglycerol, triacylglycerol, phosphatidylcholine, digalactosyldiacylglycerol, and diacylglycerol. Maximum rates of total glycerolipid biosynthesis were obtained in the presence of 2.4 mM glycerol-3-phosphate, 15 mM KHCO3, 0.2 mM sodium-acetate, 0.5 mM each of NADH and NADPH, 0.05 mM coenzyme A, 2 mM MgCl2, 1 mM ATP, 0.1 M Bis-Tris propane (pH 7.5), and 0.31 M sorbitol. Glycerolipid biosynthesis was completely dependent on exogenously supplied ATP, coenzyme A, and a divalent cation, whereas the remaining cofactors improved their activity from 1.3- to 2.4-fold. Radioactivity from glycerol-3-phosphate was recovered predominantly in phosphatidic acid, phosphatidylglycerol, diacylglycerol, and triacylglycerol with lesser amounts in phosphatidylcholine and monoacylglycerol. The proportions of the various radiolabeled lipids that accumulated were dependent on the pH and the concentration of ATP and glycerol-3-phosphate. The data presented indicate that pea root plastids can synthesize almost all of their component glycerolipids and that glycerolipid biosynthesis is tightly coupled to de novo fatty acid biosynthesis. pH and the availability of ATP may have important roles in the regulation of lipid biosynthesis at the levels of phosphatidic acid phosphatase and in the reactions that are involved in phosphatidylglycerol and triacylglycerol biosynthesis.  相似文献   

10.
The modulation of substrate selectivity of human plasma LTP reaction is the subject of the present investigation. The moderate selectivity by a factor of 5 to 6 was observed in the LTP-catalyzed transfer of cholesteryl ester over triacylglycerol between plasma lipoproteins. On the other hand, the transfer of cholesteryl ester by LTP was highly selective over the negligible transfer of triacylglycerol, by a factor of 60 to 500, between the microemulsions with LDL size, regardless of the activators such as human and pig apolipoprotein (apo) A-I, human apo C-III and apo E that bound to the surface of the emulsion in equilibrium. The presence of free cholesterol in these microemulsions reduced slightly the rate of cholesteryl ester transfer but had no effect on triacylglycerol transfer. Other surface-active reagents such as cholic acid, Triton X-100 and Tween-20, did not have an effect on the triacylglycerol transfer either. Triacylglycerol transfer by LTP became measurable between such lipid particles as prepared by co-sonication of lipid with pig apo A-I and isolated as the mixed-microemulsions in the density of LDL and HDL. In these conditions, the substrate selectivity for cholesteryl ester over triacylglycerol was a factor of 6 to 16 mimicking the ratio in plasma lipoproteins. The conformation of pig apo A-I estimated by circular dichroism showed that its apparent helical content was further more induced when apo A-I was integrated into the mixed-microemulsion by co-sonication than the lipid-bound apo A-I in equilibrium. Apo A-I, thus integrated into lipid particles, was highly resistant to the denaturation by guanidine hydrochloride while the lipid-bound apo A-I in equilibrium was denatured as readily as the lipid-free protein. Thus, triacylglycerol transfer by LTP was induced by structural modulation of substrate-carrying lipid particles such as higher integration of apolipoproteins.  相似文献   

11.
Metabolism of protein-free lipid emulsion models of chylomicrons in rats   总被引:4,自引:0,他引:4  
Emulsions were prepared by ultrasonication of mixtures of triolein, cholesteryl oleate, phosphatidylcholine and cholesterol in aqueous dispersions, then purified by ultracentrifugation. After injection into rats, the metabolism of the artificial, protein-free emulsions was comparable to the metabolism of chylomicrons collected from rat intestinal lymph during the absorption of fat. Like chylomicrons, the emulsion triacylglycerol was removed from the plasma more quickly than emulsion cholesteryl ester. Also like chylomicrons, much more emulsion cholesteryl ester than triacylglycerol appeared in the liver 10 min after injection, and only trace amounts appeared in the spleen. Because the artificial emulsions gained apolipoproteins when incubated with plasma, their metabolism was probably facilitated by the recipient rat plasma apolipoproteins and so, in rats made apolipoprotein-deficient by treatment with estrogen, the removal of emulsions from the plasma was slowed. Removal was also slowed in hyperlipidemic rats fed a high-fat, high-cholesterol diet to expand the plasma pools of the triacylglycerol-rich lipoproteins and remnants. The results indicate that the metabolism of lymph chylomicrons can be modeled by artificial, protein-free lipid emulsions not only in the initial partial hydrolysis by lipoprotein lipase, but also in the delivery of a remnant-like particle to the liver.  相似文献   

12.
13.
The structure of mucosal triacylglycerols was studied in rat intestinal mucosa in vivo during the absorption of a low molecular weight fraction of butter oil and of the corresponding free fatty acids of medium and long chain length. The mucosal lipids were isolated by solvent extraction and the acylglycerol structures were determined by combined AgNO3- thin-layer chromatography and gas-liquid chromatography techniques and stereospecific analysis. Evidence was obtained for a rapid biosynthesis of triacylglycerols from diacylglycerols arising from the operation of both the monoacylglycerol and the phosphatidic acid biosynthetic pathways. Both sn-1,2- and sn-2,3-diacylglycerols appeared to be converted to triacylglycerols at significant rates, but a preferential utilization of sn-1,2-diacylglycerols could not be excluded. Endogenous dilution varied from a miniumum of 5% during triacylglycerol biosynthesis from monoacylglycerols to 15% during their synthesis from free fatty acids, and was characterized by a preferential placement of the endogenous acids in the sn-3 and 2 positions of the triacylglycerol molecules. Exogenous myristic acid was preferentially associated with the sn-3 position, and stearic acid became preferentially bound to the sn-1 position. The complexity of the triacylglycerol end products prevented an exact estimate of the contribution of the phosphatidic acid pathway, but the acylglycerol structures were compatible with a minimum of 20% of total triacylglycerol yield at all times.  相似文献   

14.
Soybean triacylglycerol particles, stabilized with egg yolk sphingomyelin (SPH), phosphatidylcholine (PC), phosphatidylethanolamine (PE), or PC-PE mixtures, with diameters ranging from 170 to 550 nm were prepared by sonication and isolated by ultracentrifugation. Binding of apoproteins to the lipid particles was studied in vivo using the strategy of Connelly and Kuksis. The recoveries of the injected particles, which had decreased in size and undergone minimal changes in lipid composition, ranged from 70% and 57% for SPH- and PC-stabilized particles to 14% for particles stabilized with egg yolk PC-PE mixtures. The apoprotein (apo) composition of the recovered particles showed qualitative and quantitative differences, which were affected by the number of washes during isolation. After four washes, the SPH and PC particles contained apoE, apoC-II, and apoC-III as major components and apoA-IV as minor components. In addition, all particles, except those stabilized with egg yolk PC, contained large amounts of albumin. In contrast to egg yolk PC, the dipalmitoyl PC particles bound albumin as a major component. The recovered PC-PE and PE particles were characterized by a relative decrease of apoC and greatly increased binding of albumin. The higher rate of clearance of the PE-containing particles was attributed to a relative absence of apoC-III, which is known to delay hepatic uptake of lipid particles containing it, and to a more rapid hydrolysis of PE by lipoprotein lipases. Since PE occurs as a minor and variable component of chylomicrons and plasma lipoproteins, the present observations are of physiological interest.  相似文献   

15.
The recognition of chylomicrons as dietary lipid transporters dates back to more than 70 years and marks a milestone in lipoprotein history. Conventionally, three phases constitute the process of absorption of exogenous fat: intraluminal, intestinal, and delivery. The intraluminal phase includes chemical hydrolysis by lipolytic enzymes and the micellar solubilization of lipolytic products by bile acids. The intestinal phase comprises the diffusion of micelles through the unstirred water layer, passive diffusion across the microvillous membrane of the enterocyte, and the formation of lipid-carrying lipoproteins. The delivery phase involves the exocytosis of chylomicrons from the absorptive cells and their subsequent removal by lymphatic structures and the systemic circulation. The precise steps and factors involved in all phases of chylomicron synthesis are not yet known, but both experimental and clinical studies have been helpful. Of the inborn metabolic disorders, the prerequisite function of apolipoprotein (apo B) for the assembly and release of lipoprotein particles stood out. Moreover, evidence emerged that the enterocyte produces apo B-100 in addition to apo B-48. Calcium and essential fatty acid status originates as determinants for triglyceride-rich particle synthesis. Furthermore, the developmental changes and regulatory factors of lipoprotein elaboration represent excellent tools in the study of the intracellular mechanisms of lipid transport.  相似文献   

16.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

17.
The influence of chylomicron remnants on lipid accumulation and synthesis and the activity and/or expression of mRNA for some of the key enzymes involved was investigated in the murine macrophage cell line J774. The effects of varying the polyunsaturated fatty acid (PUFA) composition and oxidation state of the remnants were also examined. Chylomicron remnants derived from corn oil (rich in n-6 PUFA) or fish oil (rich in n-3 PUFA) were prepared in vivo and oxidised by incubation with CuSO(4). The native and oxidised remnants caused a marked rise in intracellular triacylglycerol levels, but the rise induced by corn oil remnants (four- to sixfold) was greater than that observed with fish oil remnants (<2-fold). Triacylglycerol synthesis, as measured by the incorporation of [3H]oleate and [3H]glycerol into cellular triacylglycerol, was increased by all four remnant types tested, and corn oil remnants had a significantly greater effect than fish oil remnants. Oxidation of the remnants did not affect the results obtained. Although the incorporation of [3H]oleate into cholesteryl ester by the cells was not significantly changed by any of the four types of remnants tested, the activity and expression of mRNA for acyl Co-enzyme A: cholesterol acyltransferase (ACAT) was increased by corn oil, but not by fish or oxidised corn, remnants. Neutral cholesteryl ester hydrolase (nCEH) activity, however, was also raised by corn oil remnants. These studies indicate that chylomicron remnants induce the accumulation of triacylglycerol in J774 macrophages, and that increased synthesis of triacylglycerol plays a major role in this process. Furthermore, they demonstrate that these effects are enhanced when the remnants are enriched in n-6 PUFA as compared with n-3 PUFA, but not after oxidation of the particles, suggesting that the fatty acid composition of chylomicron remnants may be more important than their oxidation state in their ability to induce foam cell formation.  相似文献   

18.
To investigate the effects of enteral and parenteral alimentation on VLDL release from the liver, a lipid-free liquid nutriment was continuously administered to free-moving rats via the oral cavity (oral group), stomach (enteral group) or superior caval vein (parenteral group). After 1-week of nutrition, the plasma VLDL concentrations were significantly lowered in the enterally-fed group. By immunoblotting assay using a specific antiserum, plasma contents of both apoprotein B-100 and B-48, the major components of rat apoprotein B, were found to be decreased in the enteral group, whereas only that of apoprotein B-48 was reduced in the parenteral group as compared with the oral group. Sucrose gradient centrifugation of the lipid droplets in the liver from the enteral group showed an increase of the free-triacylglycerol fraction with a concomitant increase of the apoprotein B-48-rich triacylglycerol fraction. These results suggest that enteral nutrition causes triacylglycerol accumulation in the liver, at least in part by impairment of lipoprotein release from the liver.  相似文献   

19.
Previous studies in our laboratory have shown that very-low-density lipoproteins (VLDL) synthesized by the intestine of the diet-induced hypercholesterolemic rat are enriched in cholesteryl esters and unesterified cholesterol compared with intestinal VLDL from control rats. In these studies, we isolated and characterized nascent intestinal Golgi intermediate-density lipoproteins (IDL, d 1.006-1.040 g/ml) and studied isotope incorporation into apoliproteins of Golgi VLDL from control and hypercholesterolemic rats. IDL were triacylglycerol-rich lipoproteins but contained more cholesteryl ester and protein than the corresponding Golgi VLDL fractions. IDL from hypercholesterolemic rats were enriched in cholesteryl esters to a greater extent than IDL from control rats. The apolipoprotein patterns of IDL fractions were the same as those of intestinal Golgi VLDL, consisting of apolipoproteins (apo) B-48, A-I and A-IV. Time-course isotope incorporation curves for apo A-I and A-IV in Golgi VLDL were similar, but they differed from curves for apo B-48. None of these curves was markedly altered in the hypercholesterolemic rat. We conclude that the major effect of increased dietary cholesterol on intestinal lipoprotein biosynthesis is to increase the percentage of cholesteryl esters in Golgi lipoproteins. Dietary cholesterol does not alter the apolipoprotein composition of Golgi lipoproteins, nor does it have a significant effect on the pattern of isotope incorporation into apolipoproteins of Golgi VLDL. The effect of cholesteryl ester enrichment on the subsequent metabolism of these particles in the circulation and the effect of these particles on hepatic lipoprotein production remain to be determined.  相似文献   

20.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号