首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The review presents a definition of loci controlling quantitative traits (quantitative trait loci, QTLs) and localization of all currently known QTLs responsible for milk production traits in dairy cattle. The QTL number and chromosome localization are verified, with special reference to chromosomes 1, 3, 6, 14, 20, and 23. In a number of cases, close location of QTLs for mastitis and for milk production traits was found. Some aspects of QTL pleiotropy and epistasis are discussed and mapping methods of major QTLs are listed. Original Russian Text Sc M.G. Smaragdov, 2006, published in Genetika, 2006, Vol. 42, No. 1, pp. 5–21.  相似文献   

2.
Analysis of the pattern of the chromosomal localization of quantitative trait loci (QTLs) is necessary for comprehensively understanding their functions. The chromosomal localization of QTLs controlling milk production traits has been studied in cattle chromosomes. The distribution of QTLs between chromosomes has proved to be binomial. Their distribution along each chromosome was, in general, uniform, except for the QTLs controlling the somatic cell score (SCS), which tended towards telomeric location. However, there are chromosomes either enriched with or particularly poor in QTLs. The QTL distribution patters are the most similar for the milk yield (M) and milk protein yield (P) and for milk fat yield (F) and milk fat content (%F). The pattern of the SCS QTLs stands out among those of other QTLs. The distance between the QTLs of contrasting traits is the shortest for M and P QTLs, longer for M and milk protein content (%P) QTLs, and still longer for M and %F QTLs, which may be explained by QTL pleiotropy, a common phenomenon in cattle.  相似文献   

3.
To fine map the previously detected quantitative trait loci (QTLs) affecting milk production traits on bovine chromosome 6 (BTA6), 15 microsatellite markers situated within an interval of 14.3 cM spanning from BMS690 to BM4528 were selected and 918 daughters of 8 sires were genotyped. Two mapping approaches, haplotype sharing based LD mapping and single marker regression mapping, were used to analyze the data. Both approaches revealed a quantitative trait locus (QTL) with significant effects on milk yield, fat yield and protein yield located in the segment flanked by markers BMS483 and MNB209, which spans a genetic distance of 0.6 cM and a physical distance of 1.5 Mb. In addition, the single marker regression mapping also revealed a QTL affecting fat percentage and protein percentage at marker DIK2291. Our fine mapping work will facilitate the cloning of candidate genes underlying the QTLs for milk production traits.  相似文献   

4.
Cattle chromosome 6 was scanned with 11 markers, ten microsatellites and the casein haplotype, to identify quantitative trait loci (QTLs) affecting the following milk production traits: milk yield, fat percentage, fat yield, protein percentage and protein yield. Twelve Finnish Ayrshire half-sib families with a total of 480 sons were genotyped and used in a grand-daughter design. Interval mapping was performed with a multiple-marker regression approach with a one-QTL and a two-QTL model, and the significance threshold values were determined empirically using a permutation test. Across-family analysis with the one-QTL model revealed an effect on protein percentage (P < 0.05) and on milk yield (P < 0.05). The analysis with the two-QTL model identified significant effects (P < 0.05) on protein percentage, milk yield, and fat yield. Comparing these two cases, the results suggest the existence of two QTLs on chromosome 6 with an effect on milk production traits. One of the QTLs was located around the casein genes. As the other QTL was similar in location and effect to a QTL found previously in Holstein-Friesians, an identity-by-descent approach could be applied to fine map this region.  相似文献   

5.
Effects of individual quantitative trait loci (QTLs) can be isolated with the aid of linked genetic markers. Most studies have analyzed each marker or pair of linked markers separately for each trait included in the analysis. Thus, the number of contrasts tested can be quite large. The experimentwise type-I error can be readily derived from the nominal type-I error if all contrasts are statistically independent, but different traits are generally correlated. A new set of uncorrelated traits can be derived by application of a canonical transformation. The total number of effective traits will generally be less than the original set. An example is presented for DNA microsatellite D21S4, which is used as a marker for milk production traits of Israeli dairy cattle. This locus had significant effects on milk and protein production but not on fat. It had a significant effect on only one of the canonical variables that was highly correlated with both milk and protein, and this variable explained 82% of the total variance. Thus, it can be concluded that a single QTL is affecting both traits. The effects on the original traits could be derived by a reverse transformation of the effects on the canonical variable.  相似文献   

6.
Typical linkage and quantitative trait locus (QTL) analyses in forest trees have been conducted in single pedigrees with sex-averaged linkage maps. The results of a QTL analysis for wood quality and growth traits of coastal Douglas-fir using eight full-sib families, each consisting of 40 progeny, replicated on four sites are presented. The resulting map of segregating genetic markers consisted of 120 amplified fragment length polymorphism (AFLP) loci distributed across 19 linkage groups. The wood quality traits represent the widest suite of traits yet examined for QTL analysis in a tree species in a single study. Wood fiber traits showed the lowest number of QTLs (3) with relatively small effect (ca. 4%); wood density traits also showed just three QTLs but with slightly larger effect; wood chemistry traits showed more QTLs (7), while ring density traits showed many QTLs with large numbers of QTLs (78) and interesting patterns of temporal variation. Growth traits gave just five QTLs but of major effect (10–16%). Trees, with their long generation times, provide a rich resource for studies of temporal variation of QTL expression.  相似文献   

7.
From an extensive review of public domain information on dairy cattle quantitative trait loci (QTL), we have prepared a draft online QTL map for dairy production traits. Most publications (45 out of 55 reviewed) reported QTL for the major milk production traits (milk, fat and protein yield, and fat and protein concentration (%)) and somatic cell score. Relatively few QTL studies have been reported for more complex traits such as mastitis, fertility and health. The collated QTL map shows some chromosomal regions with a high density of QTL, as well as a substantial number of QTL at single chromosomal locations. To extract the most information from these published records, a meta-analysis was conducted to obtain consensus on QTL location and allelic substitution effect of these QTL. This required modification and development of statistical methodologies. The meta-analysis indicated a number of consensus regions, the most striking being two distinct regions affecting milk yield on chromosome 6 at 49 cM and 87 cM explaining 4.2 and 3.6 percent of the genetic variance of milk yield, respectively. The first of these regions (near marker BM143) affects five separate milk production traits (protein yield, protein percent, fat yield, fat percent, as well as milk yield).  相似文献   

8.
A quantitative trait locus for live weight maps to bovine Chromosome 23   总被引:2,自引:0,他引:2  
A multiple-marker mapping approach was used to search for quantitative trait loci (QTLs) affecting production, health, and fertility traits in Finnish Ayrshire dairy cattle. As part of a whole-genome scan, altogether 469 bulls were genotyped for six microsatellite loci in 12 families on Chromosome (Chr) 23. Both multiple-marker interval mapping with regression and maximum-likelihood methods were applied with a granddaughter design. Eighteen traits, belonging to 11 trait groups, were included in the analysis. One QTL exceeded experiment level and one QTL genome level significance thresholds. Across-families analysis provided strong evidence (Pexperiment= 0.0314) for a QTL affecting live weight. The QTL for live weight maps between markers BM1258 and BoLA DRBP1. A QTL significant at genome level (Pgenome= 0.0087) was mapped for veterinary treatment, and the putative QTL probably affects susceptibility to milk fever or ketosis. In addition, three traits exceeded the chromosome 5% significance threshold: protein percentage of milk, calf mortality (sire), and milking speed. In within-family analyses, protein percentage was associated with markers in one family (LOD score = 4.5). Received: 14 December 1998 / Accepted: 28 March 1998  相似文献   

9.
We have used the results of an experiment mapping quantitative trait loci (QTL) affecting milk yield and composition to estimate the total number of QTL affecting these traits. We did this by estimating the number of segregating QTL within a half-sib daughter design using logic similar to that used to estimate the "false discovery rate" (FDR). In a half-sib daughter design with six sire families we estimate that the average sire was heterozygous for approximately 5 QTL per trait. Also, in most cases only one sire was heterozygous for any one QTL; therefore at least 30 QTL were likely to be segregating for these milk production traits in this Holstein population.  相似文献   

10.
L Min  R Yang  X Wang  B Wang 《Heredity》2011,106(1):124-133
The dissection of the genetic architecture of quantitative traits, including the number and locations of quantitative trait loci (QTL) and their main and epistatic effects, has been an important topic in current QTL mapping. We extend the Bayesian model selection framework for mapping multiple epistatic QTL affecting continuous traits to dynamic traits in experimental crosses. The extension inherits the efficiency of Bayesian model selection and the flexibility of the Legendre polynomial model fitting to the change in genetic and environmental effects with time. We illustrate the proposed method by simultaneously detecting the main and epistatic QTLs for the growth of leaf age in a doubled-haploid population of rice. The behavior and performance of the method are also shown by computer simulation experiments. The results show that our method can more quickly identify interacting QTLs for dynamic traits in the models with many numbers of genetic effects, enhancing our understanding of genetic architecture for dynamic traits. Our proposed method can be treated as a general form of mapping QTL for continuous quantitative traits, being easier to extend to multiple traits and to a single trait with repeat records.  相似文献   

11.
A recurring issue in studies of quantitative trait loci (QTLs) is whether QTLs that appear to have pleiotropic effects are indeed caused by pleiotropy at single loci or by linked QTLs. Previous work identified a QTL that affected tail length in mice and the lengths of various bones, including the humerus, ulna, femur, tibia, and mandible. The effect of this QTL on tail length has since been found to be due to multiple linked QTLs and so its apparently pleiotropic effects may have been due to linked QTLs with distinct effects. In the present study we examined a line of mice segregating only for a 0.94-Mb chromosomal region known to contain a subset of the QTLs influencing tail length. We measured a number of skeletal dimensions, including the lengths of the skull, mandible, humerus, ulna, femur, tibia, calcaneus, metatarsus, and a tail bone. The QTL region was found to have effects on the size of the mandible and length of the tail bone, with little or no effect on the other traits. Using a randomization approach, we rejected the null hypothesis that the QTL affected all traits equally, thereby demonstrating that the pleiotropic effects reported earlier were due to linked loci with distinct effects. This result underlines the possibility that seemingly pleiotropic effects of QTLs may frequently be due to linked loci and that high-resolution mapping will often be required to distinguish between pleiotropy and linkage.  相似文献   

12.
Mapping quantitative trait loci with epistatic effects   总被引:1,自引:0,他引:1  
Yi N  Xu S 《Genetical research》2002,79(2):185-198
Epistatic variance can be an important source of variation for complex traits. However, detecting epistatic effects is difficult primarily due to insufficient sample sizes and lack of robust statistical methods. In this paper, we develop a Bayesian method to map multiple quantitative trait loci (QTLs) with epistatic effects. The method can map QTLs in complicated mating designs derived from the cross of two inbred lines. In addition to mapping QTLs for quantitative traits, the proposed method can even map genes underlying binary traits such as disease susceptibility using the threshold model. The parameters of interest are various QTL effects, including additive, dominance and epistatic effects of QTLs, the locations of identified QTLs and even the number of QTLs. When the number of QTLs is treated as an unknown parameter, the dimension of the model becomes a variable. This requires the reversible jump Markov chain Monte Carlo algorithm. The utility of the proposed method is demonstrated through analysis of simulation data.  相似文献   

13.
The evolution of morphological modularity through the sequestration of pleiotropy to sets of functionally and developmentally related traits requires genetic variation in the relationships between traits. Genetic variation in relationships between traits can result from differential epistasis, where epistatic relationships for pairs of loci are different for different traits. This study maps relationship quantitative trait loci (QTLs), specifically QTLs that affect the relationship between individual mandibular traits and mandible length, across the genome in an F2 intercross of the LG/J and SM/J inbred mouse strains (N = 1045). We discovered 23 relationship QTLs scattered throughout the genome. All mandibular traits were involved in one or more relationship QTL. When multiple traits were affected at a relationship QTL, the traits tended to come from a developmentally restricted region of the mandible, either the muscular processes or the alveolus. About one-third of the relationship QTLs correspond to previously located trait QTLs affecting the same traits. These results comprise examples of genetic variation necessary for an evolutionary response to selection on the range of pleiotropic effects.  相似文献   

14.
Selective DNA pooling is an advanced methodology for linkage mapping of quantitative trait loci (QTL) in farm animals. The principle is based on densitometric estimates of marker allele frequency in pooled DNA samples of phenotypically extreme individuals from half-sib, backcross and F(2) experimental designs in farm animals. This methodology provides a rapid and efficient analysis of a large number of individuals with short tandem repeat markers that are essential to detect QTL through the genome - wide searching approach. Several strategies involving whole genome scanning with a high statistical power have been developed for systematic search to detect the quantitative traits loci and linked loci of complex traits. In recent studies, greater success has been achieved in mapping several QTLs in Israel-Holstein cattle using selective DNA pooling. This paper outlines the currently emerged novel strategies of linkage mapping to identify QTL based on selective DNA pooling with more emphasis on its theoretical pre-requisite to detect linked QTLs, applications, a general theory for experimental half-sib designs, the power of statistics and its feasibility to identify genetic markers linked QTL in dairy cattle. The study reveals that the application of selective DNA pooling in dairy cattle can be best exploited in the genome-wide detection of linked loci with small and large QTL effects and applied to a moderately sized half-sib family of about 500 animals.  相似文献   

15.
Interval mapping was carried out to identify quantitative trait loci (QTL) for milk production traits in five granddaughter design families of the German Holstein population. Fourteen randomly generated markers spanning the whole of BTA6 and six targeted microsatellite markers from BTA6q21-31 were included in the analysis. In one family a QTL with effects on milk fat yield and milk protein yield was mapped to the interval TGLA37-FBN13 (3 CM proximal to FBN13, lodscore 3.22) in the middle part of the chromosome. Although there are several reports about QTL with effects on milk production traits on BTA6 in the literature, a QTL with effects on milk fat and milk protein yield has not been previously described.  相似文献   

16.
17.
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.  相似文献   

18.
To detect QTLs controlling traits of agronomic importance in rice, two elite homozygous lines 9024 and LH422, which represent the indica and japonica subspecies of rice (Oryza sativa), were crossed. Subsequently a modified single-seed-descent procedure was employed to produce 194 recombinant inbred lines (F8). The 194 lines were genotyped at 141 RFLP marker loci and evaluated in a field trial for 13 quantitative traits including grain yield. Transgressive segregants were observed for all traits examined. The number of significant QTLs (LOD 2.0) detected affecting each trait ranged from one to six. The percentage of phenotypic variance explained by each QTL ranged from 5.1% to 73.7%. For those traits for which two or more QTLs were detected, increases in the traits were conditioned by indica alleles at some QTLs Japonica alleles at others. No significant evidence was found for epistasis between markers associated with QTLs and all the other markers. Pleitropic effects of single QTLs on different traits are suggested by the observation of clustering of QTLs. No QTL for traits was found to map to the vicinity of major gene loci governing the same traits qualitatively. Evidence for putative orthologous QTLs across rice, maize, oat, and barley is discussed.  相似文献   

19.
Amylose content (AC), gel consistency (GC) and gelatinazation temperature (GT) are three important traits that influence the cooking and eating quality of rice. The objective of this study was to characterize the genetic components, including main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs), that are involved in the control of these three traits. A population of doubled haploid (DH) lines derived from a cross between two indica varieties Zhenshan 97 and H94 was used, and data were collected from a field experiment conducted in two different environments. A genetic linkage map consisting of 218 simple sequence repeat (SSR) loci was constructed, and QTL analysis performed using qtlmapper 1.6 resolved the genetic components into main-effect QTLs, epistatic QTLs and QEs. The analysis detected a total of 12 main-effect QTLs for the three traits, with a QTL corresponding to the Wx locus showing a major effect on AC and GC, and a QTL corresponding to the Alk locus having a major effect on GT. Ten digenic interactions involving 19 loci were detected for the three traits, and six main-effect QTLs and two pairs of epistatic QTLs were involved in QEs. While the main-effect QTLs, especially the ones corresponding to known major loci, apparently played predominant roles in the genetic basis of the traits, under certain conditions epistatic effects and QEs also played important roles in controlling the traits. The implications of the findings for rice quality improvement are discussed.  相似文献   

20.
The genetic architecture of fitness-relevant traits in natural populations is a topic that has remained almost untouched by quantitative genetics. Given the importance of parasitism for the host's fitness, we used QTL mapping to study the genetic architecture of traits relevant for host-parasite interactions in the trypanosome parasite, Crithidia bombi and its host, Bombus terrestris. The three traits analysed were the parasite's infection intensity, the strength of the general immune response (measured as the encapsulation of a novel antigen) and body size. The genetic architecture of these traits was examined in three natural, unmanipulated mapping populations of B. terrestris. Our results indicate that the intracolonial phenotypic variation of all three traits is based on a network of QTLs and epistatic interactions. While these networks are similar between mapping populations in complexity and number of QTLs, as well as in their epistatic interactions, the variability in the position of QTL and the interacting loci was high. Only one QTL for body size was plausibly found in at least two populations. QTLs for encapsulation and Crithidia infection intensity were located on the same linkage groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号