首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Rsp5p, ubiquitin-protein ligase, an enzyme of the ubiquitination pathway, contains three WW domains that mediate protein-protein interactions. To determine if these domains adapt Rsp5p to a subset of substrates involved in numerous cellular processes, we generated mutations in individual or combinations of the WW domains. The rsp5-w1, rsp5-w2, and rsp5-w3 mutant alleles complement RSP5 deletions at 30 degrees. Thus, individual WW domains are not essential. Each rsp5-w mutation caused temperature-sensitive growth. Among variants with mutations in multiple WW domains, only rsp5-w1w2 complemented the deletion. Thus, the WW3 domain is sufficient for Rsp5p essential functions. To determine whether rsp5-w mutations affect endocytosis, fluid phase and uracil permease (Fur4p) endocytosis was examined. The WW3 domain is important for both processes. WW2 appears not to be important for fluid phase endocytosis whereas it is important for Fur4p endocytosis. In contrast, the WW1 domain affects fluid phase endocytosis, but it does not appear to function in Fur4p endocytosis. Thus, various WW domains play different roles in the endocytosis of these two substrates. Rsp5p is located in the cytoplasm in a punctate pattern that does not change during the cell cycle. Altering WW domains does not change the location of Rsp5p.  相似文献   

5.
6.
Yeast Rsp5p and its mammalian homologue, Nedd4, are hect domain ubiquitin-protein ligases (E3s) required for the ubiquitin-dependent endocytosis of plasma membrane proteins. Because ubiquitination is sufficient to induce internalization, E3-mediated ubiquitination is a key regulatory event in plasma membrane protein endocytosis. Rsp5p is an essential, multidomain protein containing an amino-terminal C2 domain, three WW protein-protein interaction domains, and a carboxy-terminal hect domain that carries E3 activity. In this study, we demonstrate that Rsp5p is peripherally associated with membranes and provide evidence that Rsp5p functions as part of a multimeric protein complex. We define the function of Rsp5p and its domains in the ubiquitin-dependent internalization of the yeast alpha-factor receptor, Ste2p. Temperature-sensitive rsp5 mutants were unable to ubiquitinate or to internalize Ste2p at the nonpermissive temperature. Deletion of the entire C2 domain had no effect on alpha-factor internalization; however, point mutations in any of the three WW domains impaired both receptor ubiquitination and internalization. These observations indicate that the WW domains play a role in the important regulatory event of selecting phosphorylated proteins as endocytic cargo. In addition, mutations in the C2 and WW1 domains had more severe defects on transport of fluid-phase markers to the vacuole than on receptor internalization, suggesting that Rsp5p functions at multiple steps in the endocytic pathway.  相似文献   

7.
8.
Rsp5p is an ubiquitin (Ub)-protein ligase of the Nedd4 family that carries WW domains involved in interaction with PPXY-containing proteins. It plays a key role at several stages of intracellular trafficking, such as Ub-mediated internalization of endocytic cargoes and Ub-mediated sorting of membrane proteins to internal vesicles of multivesicular bodies (MVBs), a process that is crucial for their subsequent targeting to the vacuolar lumen. Sna3p is a membrane protein previously described as an Ub-independent MVB cargo, but proteomic studies have since shown it to be an ubiquitylated protein. Sna3p carries a PPXY motif. We observed that this motif mediates its interaction with Rsp5p WW domains. Mutation of either the Sna3p PPXY motif or the Rsp5p WW3 domain or reduction in the amounts of Rsp5 results in the mistargeting of Sna3p to multiple mobile vesicles and prevents its sorting to the endosomal pathway. This sorting defect appears to occur prior to the defect displayed in rsp5 mutants by other MVB cargoes, which are correctly sorted to the endosomal pathway but missorted to the vacuolar membrane instead of the vacuolar lumen. Sna3p is polyubiquitylated on one target lysine, and a mutant Sna3p lacking its target lysine displays defective MVB sorting. Sna3p undergoes Rsp5-dependent polyubiquitylation, with K63-linked Ub chains.  相似文献   

9.
10.
Kee Y  Lyon N  Huibregtse JM 《The EMBO journal》2005,24(13):2414-2424
Saccharomyces cerevisiae Rsp5 is an essential HECT ubiquitin ligase involved in several biological processes. To gain further insight into regulation of this enzyme, we identified proteins that copurified with epitope-tagged Rsp5. Ubp2, a deubiquitinating enzyme, was a prominent copurifying protein. Rup1, a previously uncharacterized UBA domain protein, was required for binding of Rsp5 to Ubp2 both in vitro and in vivo. Overexpression of Ubp2 or Rup1 in the rsp5-1 mutant elicited a strong growth defect, while overexpression of a catalytically inactive Ubp2 mutant or Rup1 deleted of the UBA domain did not, suggesting an antagonistic relationship between Rsp5 and the Ubp2/Rup1 complex. Consistent with this model, rsp5-1 temperature sensitivity was suppressed by either ubp2Delta or rup1Delta mutations. Ubp2 reversed Rsp5-catalyzed substrate ubiquitination in vitro, and Rsp5 and Ubp2 preferentially assembled and disassembled, respectively, K63-linked polyubiquitin chains. Together, these results indicate that Rsp5 activity is modulated by being physically coupled to the Rup1/Ubp2 deubiquitinating enzyme complex, representing a novel mode of regulation for an HECT ubiquitin ligase.  相似文献   

11.
12.
13.
Precursor forms of vacuolar proteins with transmembrane domains, such as the carboxypeptidase S Cps1p and the polyphosphatase Phm5p, are selectively sorted in endosomal compartments to vesicles that invaginate, budding into the lumen of the late endosomes, resulting in the formation of multivesicular bodies (MVBs). These proteins are then delivered to the vacuolar lumen following fusion of the MVBs with the vacuole. The sorting of Cps1p and Phm5p to these structures is mediated by ubiquitylation, and in doa4 mutant cells, which have reduced level of free ubiquitin, these proteins are missorted to the vacuolar membrane. A RING-finger ubiquitin ligase Tul1p has been shown to participate in the ubiquitylation of Cps1p and Phm5p. We show here that the HECT-ubiquitin ligase Rsp5p is also required for the ubiquitylation of these proteins, and therefore for their sorting to MVBs. Rsp5p is an essential ubiquitin ligase containing an N-terminal C2 domain followed by three WW domains, and a C-terminal catalytic HECT domain. In cells with low levels of Rsp5p (npi1 mutant cells), vacuolar hydrolases do not reach the vacuolar lumen and are instead missorted to the vacuolar membrane. The C2 domain and both the second and third WW domains of Rsp5p are important determinants for sorting to MVBs. Ubiquitylation of Cps1p was strongly reduced in the npi1 mutant strain and ubiquitylation was completely abolished in the npi1 tul1Delta double mutant. These data demonstrate that Rsp5p plays a novel and key role in intracellular trafficking, and extend the currently very short list of substrates ubiquitylated in vivo by several different ubiquitin ligases acting cooperatively.  相似文献   

14.
The sorting of integral membrane proteins such as carboxypeptidase S (Cps1p) into the luminal vesicles of multivesicular bodies (MVBs) in Saccharomyces cerevisiae requires ubiquitination of their cytosolic domains by the ubiquitin ligases Rsp5p and/or Tul1p. An exception is Sna3p, which does not require ubiquitination for entry into MVBs. The mechanism underlying this ubiquitination-independent MVB sorting pathway has not yet been characterized. Here, we show that Sna3p sorting into the MVB pathway depends on a direct interaction between a PPAY motif within its C-terminal cytosolic tail and the WW domains of Rsp5p. Disruption of this interaction inhibits vacuolar targeting of Sna3p and causes its accumulation in a compartment that overlaps only partially with MVBs. Surprisingly, Sna3p does require a functional ubiquitin-ligase HECT domain within Rsp5p; however, the dependence of Sna3p on HECT domain activity is distinct from that of Cps1p. Last, we show that Sna3p requires neither Tul1p nor the transmembrane adaptor protein Bsd2p for its MVB sorting. Our data demonstrate that Sna3p follows a novel ubiquitination-independent, but Rsp5p-mediated, sorting pathway to the vacuole.  相似文献   

15.
16.
Ubiquitination of integral plasma membrane proteins triggers their rapid internalization into the endocytic pathway. The yeast ubiquitin ligase Rsp5p, a homologue of mammalian Nedd4 and Itch, is required for the ubiquitination and subsequent internalization of multiple plasma membrane proteins, including the alpha-factor receptor (Ste2p). Here we demonstrate that Rsp5p plays multiple roles at the internalization step of endocytosis. Temperature-sensitive rsp5 mutant cells were defective in the internalization of alpha-factor by a Ste2p-ubiquitin chimera, a receptor that does not require post-translational ubiquitination. Similarly, a modified version of Ste2p bearing a NPFXD linear peptide sequence as its only internalization signal was not internalized in rsp5 cells. Internalization of these variant receptors was dependent on the catalytic cysteine residue of Rsp5p and on ubiquitin-conjugating enzymes that bind Rsp5p. Thus, a Rsp5p-dependent ubiquitination event is required for internalization mediated by ubiquitin-dependent and -independent endocytosis signals. Constitutive Ste2p-ubiquitin internalization and fluid-phase endocytosis also required active ubiquitination machinery, including Rsp5p. These observations indicate that Rsp5p-dependent ubiquitination of a trans-acting protein component of the endocytosis machinery is required for the internalization step of endocytosis.  相似文献   

17.
Regulation of long chain unsaturated fatty acid synthesis in yeast   总被引:1,自引:0,他引:1  
  相似文献   

18.
Gap1p, the general amino acid permease of Saccharomyces cerevisiae, is regulated by intracellular sorting decisions that occur in either Golgi or endosomal compartments. Depending on nitrogen source, Gap1p is transported to the plasma membrane, where it functions for amino acid uptake, or to the vacuole, where it is degraded. We found that overexpression of Bul1p or Bul2p, two nonessential components of the Rsp5p E3-ubiquitin ligase complex, causes Gap1p to be sorted to the vacuole regardless of nitrogen source. The double mutant bul1Delta bul2Delta has the inverse phenotype, causing Gap1p to be delivered to the plasma membrane more efficiently than in wild-type cells. In addition, bul1Delta bul2Delta can reverse the effect of lst4Delta, a mutation that normally prevents Gap1p from reaching the plasma membrane. Evaluation of Gap1p ubiquitination revealed a prominent polyubiquitinated species that was greatly diminished in a bul1Delta bul2Delta mutant. Both a rsp5-1 mutant and a COOH-terminal truncation of Gap1p behave as bul1Delta bul2Delta, causing constitutive delivery of Gap1p to the plasma membrane and decreasing Gap1p polyubiquitination. These results indicate that Bul1p and Bul2p, together with Rsp5p, generate a polyubiquitin signal on Gap1p that specifies its intracellular targeting to the vacuole.  相似文献   

19.
In addition to its well-known role in recognition by the proteasome, ubiquitin-conjugation is also involved in downregulation of membrane receptors, transporters and channels. In most cases, ubiquitination of these plasma membrane proteins leads to their internalization followed by targeting to the lysosome/vacuole for degradation. A crucial role in ubiquitination of many plasma membrane proteins appears to be played by ubiquitin-protein ligases of the Nedd4/Rsp5p family. All family members carry an N-terminal Ca2+-dependent lipid/protein binding (C2) domain, two to four WW domains and a C-terminal catalytic Hect-domain. Nedd4 is involved in downregulation of the epithelial Na+ channel, by binding of its WW domains to specific PY motifs of the channel. Rsp5p, the unique family member in S. cerevisiae, is involved in ubiquitin-dependent endocytosis of a great number of yeast plasma membrane proteins. These proteins lack apparent PY motifs, but carry acidic sequences, and/or phosphorylated-based sequences that might be important, directly or indirectly, for their recognition by Rsp5p. In contrast to polyubiquitination leading to proteasomal recognition, a number of Rsp5p targets carry few ubiquitins per protein, and moreover with a different ubiquitin linkage. Accumulating evidence suggests that, at least in yeast, ubiquitin itself may constitute an internalization signal, recognized by a hypothetical receptor. Recent data also suggest that Nedd4/Rsp5p might play a role in the endocytic process possibly involving its C2 domain, in addition to its role in ubiquitinating endocytosed proteins. Recieved: 19 January 2000/Revised: 6 April 2000  相似文献   

20.
The functions of Lys(63)-linked polyubiquitin chains are poorly understood, as are the enzymes that specifically generate Lys(63)-linked conjugates. Rsp5 is a HECT (homologous to E6AP C terminus) ubiquitin ligase involved in numerous processes, and an associated deubiquitinating enzyme, Ubp2, modulates its activity. A dramatic increase in Lys(63)-linked conjugates was observed in ubp2Delta cells. The formation of these was Rsp5-dependent, and ubp2Delta phenotypes could be suppressed by prevention of formation of Lys(63) conjugates. Cell wall integrity was impaired in rsp5-1 cells and in cells defective in Lys(63)-polyubiquitination, as assayed by calcofluor white sensitivity, and ubp2Delta and rup1Delta mutants suppressed the calcofluor white sensitivity of rsp5-1. A large fraction of the Lys(63) conjugates in ubp2Delta cells bound to Rsp5, and a proteomics approach was used to identify Rsp5 substrates subject to Ubp2 regulation. Two closely related proteins, Csr2 and Ecm21, were among the identified proteins. Both were efficiently Lys(63)-polyubiquitinated by Rsp5 and deubiquitinated by Ubp2. Together, these results indicate that Ubp2 modulates Lys(63)-polyubiquitination of Rsp5 substrates in vivo, including ubiquitination of two newly identified Rsp5 substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号