首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

2.
In the course of the study of the biosynthesis of the fatty acid eicosapentaenoic acid (EPA) in the microalga Porphyridium cruentum, cells were pulse-labeled with various radiolabeled fatty acid precursors. Our data show that the major end products of the biosynthesis are EPA-containing galactolipids of a eukaryotic and prokaryotic nature. The prokaryotic molecular species contain EPA and arachidonic acid at the sn-1 position and C16 fatty acids, mainly 16:0, at the sn-2 positions, whereas in the eukaryotic species both positions are occupied by EPA or arachidonic acid. However, we suggest that both the eukaryotic and prokaryotic molecular species are formed in two pathways, [omega]6 and [omega]3, which involve cytoplasmic and chloroplastic lipids. In the [omega]6 pathway, cytoplasmic 18:2-phosphatidylcholine (PC) is converted to 20:4[omega]6-PC by a sequence that includes a [delta]6 desaturase, an elongation step, and a [delta]5 desaturase. In the minor [omega]3 pathway, 18:2-PC is presumably desaturated to 18:3[omega]3, which is sequentially converted by the enzymatic sequence of the [omega]6 pathway to 20:5[omega]3-PC. The products of both pathways are exported, as their diacylglycerol moieties, to the chloroplast to be galactosylated into their respective monogalactosyldiacylglycerol molecular species. The 20:4[omega]6 in both eukaryotic and prokaryotic monogalactosyldiacylglycerol can be further desaturated to EPA by a chloroplastic [delta]17 ([omega]3) desaturase.  相似文献   

3.
Rape ( Brassica napus L. var. Bienvenue) is a 16:3 plant which contains predominantly prokaryotic species of monogalactosyldiacylglycerol i.e. sn-1 C18, sn-2 C16 (C18/C16 MGDG). Rape plants were exposed to a restricted water supply for 12 days. Under drought conditions, considerable changes in lipid metabolism were observed. Drought stress provoked a decline in leaf polar lipids, which is mainly due to a decrease in MGDG content. Determination of molecular species in phosphatidylcholine (PC) and MGDG indicated that the prokaryotic molecular species of MGDG (C18/C16) decreased after drought stress while the eukaryotic molecular species (C18/C18) remained stable. Drought stress had different effects on two key enzymes of PC and MGDG synthesis. The in vitro activity of MGDG synthase (EC. 2.4.1.46) was reduced in drought stressed plants whereas cholinephosphotransferase (EC. 2.7.8.2) activity was not affected. Altogether these results suggest that the prokaryotic pathway leading to MGDG synthesis was strongly affected by drought stress while the eukaryotic pathway was not. It was also observed that the molecular species of leaf PC became more saturated in drought stressed plants. This could be due to a specific decrease in oleate desaturase activity.  相似文献   

4.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

5.
Dunaliella salina cells were pulse-labeled for 2 min with [14C]palmitic acid, [14C]oleic acid, or [14C]lauric acid in order to trace the pathway of galactolipid biosynthesis and desaturation. Through the use of high performance liquid chromatography it was possible to follow the movement of radioactivity through many individual molecular species of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) for periods of 24 h and, in some cases, as much as 120 h. Analysis of the fatty acid fluxes permitted us to refine current views regarding biosynthesis of the predominantly "prokaryotic" galactolipids. The initial D. salina MGDG molecular species, containing paired oleate and palmitate (18:1/16:0), can follow two metabolic routes. If the palmitoyl chain is desaturated to 16:1, the resulting 18:1/16:1 MGDG is subject to rapid further desaturation to varying degrees, and a part of these products is subsequently galactosylated to DGDG. Contrary to widely held opinions, these DGDG molecular species can themselves be further desaturated toward a 18:3/16:4 final product. In a separate series of reactions, a smaller portion of the nascent 18:1/16:0 MGDG is directly galactosylated to 18:1/16:0 DGDG. This molecular species can then be sequentially desaturated to 18:2/16:0 DGDG and 18:3/16:0 DGDG. However, there is only very limited desaturation of the palmitoyl group attached to these molecular species.  相似文献   

6.
An exhaustive qualitative and quantitative profiling of the photosynthetic glycerolipids in three strains of the marine diatom Skeletonema sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. In the diatom thylakoid membrane, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) account for about 45–70% and 5–15% of the total membrane lipids, respectively. The anionic sulfoquinovosyldiacylglycerol (SQDG) as well as the likewise anionic phosphatidylglycerol (PG) contribute between 10–40% and 4–10% each. The predominant species of MGDG were those with C16:3/C16:3, C20:5/16:1, and C20:5/C16:3. Three main molecular species of DGDG contained C20:5/C16:1, C20:5/C16:2, and C16:1/C16:1. The major molecular species of SQDG were those containing combinations of C14:0/C14:0, C14:0/C16:0, C14:0/C16:1, and C14:0/C16:3. All the PG classes contained the C18:1/C18:1 as the main molecular species. Based on the fatty acid species in sn-2 position, it is indicated that MGDG and DGDG are biosynthesized through prokaryotic pathway exclusively within the chloroplast, whereas PG and SQDG have a typical mixed biosynthetic pathway (both prokaryotic pathway and eukaryotic pathways). The chemical characteristics of photosynthetic glycerolipids related with ecological physiology are discussed.  相似文献   

7.
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant galactolipid, MGDG, is assembled through both plastid and endoplasmic reticulum (ER) pathways in Arabidopsis, resulting in distinguishable molecular lipid species. Phosphatidic acid (PA) is the first glycerolipid formed by the plastid galactolipid biosynthetic pathway. It is converted to substrate diacylglycerol (DAG) for MGDG Synthase (MGD1) which adds to it a galactose from UDP‐Gal. The enzymatic reactions yielding these galactolipids have been well established. However, auxiliary or regulatory factors are largely unknown. We identified a predicted rhomboid‐like protease 10 (RBL10), located in plastids of Arabidopsis thaliana, that affects galactolipid biosynthesis likely through intramembrane proteolysis. Plants with T‐DNA disruptions in RBL10 have greatly decreased 16:3 (acyl carbons:double bonds) and increased 18:3 acyl chain abundance in MGDG of leaves. Additionally, rbl10‐1 mutants show reduced [14C]–acetate incorporation into MGDG during pulse?chase labeling, indicating a reduced flux through the plastid galactolipid biosynthesis pathway. While plastid MGDG biosynthesis is blocked in rbl10‐1 mutants, they are capable of synthesizing PA, as well as producing normal amounts of MGDG by compensating with ER‐derived lipid precursors. These findings link this predicted protease to the utilization of PA for plastid galactolipid biosynthesis potentially revealing a regulatory mechanism in chloroplasts.  相似文献   

8.
Precise structural identification of photosynthetic polar glycerolipids in microalga Tetraselmis chuii has been established using Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS) by direct analysis of the total lipids extract. The mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in both positive and negative modes. The structural determination was based on the characteristic product ions yielded by different glycerolipids under ESI-MS/MS mode, and confirmed the molecular species by the carboxylate anions produced by glycerolipids in the negative mode. As a result, more than 40 lipid molecular species, including 11 monogalactosyldiacylglycerols (MGDG), 7 digalactosyldiacylglycerols (DGDG), 16 sulfoquinovosyldiacylglycerols (SQDG), and 9 phosphatidylglycerols (PG), were detected in Tetraselmis chuii, which had never been identified before in this microalga. Furthermore, some intact lipid molecules with hydroxylated fatty acids that could not be detected by the traditional GC-MS method were found this time, providing novel information for the photosynthetic lipidome of Tetraselmis chuii. Comparative studies on fatty acids at the sn-2 position showed that SQDG and MGDG are dominantly biosynthesized through the prokaryotic pathway, PG is a typically mixed biosynthetic pathway, while DGDG is somewhat peculiar with C14:0 and C16:0 at its sn-2 position. This method could provide a full structural profile of intact photosynthetic lipid molecular species, which may be applied to study the physiological and ecological functions of lipid by monitoring their individual changes.  相似文献   

9.
Synthesis of unsaturated monogalactosyldiacylglycerol (MGDG) was examined in a mutant of Arabidopsis thaliana (L.) Heynh. containing reduced levels of hexadecatrienoic (16:3) and linolenic (18:3) acids in leaf lipids. Molecular species composition and labeling kinetics following the incorporation of exogenous [14C]fatty acids suggest that at least two pathways and multiple substrates are involved in desaturation of linoleic acid (18:2) to 18:3 for production of unsaturated galactolipids. A reduction in 18:3/16:3 MGDG and an increase in 18:2/16:2 MGDG, together with labeling kinetics of these molecular species following the incorporation of exogenous [14C]12:0 fatty acids, suggests that a chloroplastic pathway for production of 18:3 at the sn-1 position of MGDG utilizes 18:2/16:2 MGDG as a substrate. This chloroplastic (prokaryotic) pathway is deficient in the mutant. When exogenous [14C]18:1 was supplied, a eukaryotic (cytoplasmic) pathway involving the desaturation of 18:2 to 18:3 on phosphatidylcholine serves as the source of 18:3 for the sn-2 position of MGDG. This eucaryotic pathway predominates in the mutant.  相似文献   

10.
Nitrogen is an essential nutrient for plants because it represents a major constituent of numerous cellular compounds, including proteins, amino acids, nucleic acids and lipids. While N deprivation is known to have severe consequences for primary carbon metabolism, the effect on chloroplast lipid metabolism has not been analysed in higher plants. Nitrogen limitation in Arabidopsis led to a decrease in the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) and a concomitant increase in digalactosyldiacylglycerol (DGDG), which correlated with an elevated expression of the DGDG synthase genes DGD1 and DGD2. The amounts of triacylglycerol and free fatty acids increased during N deprivation. Furthermore, phytyl esters accumulated containing medium-chain fatty acids (12:0, 14:0) and a large amount of hexadecatrienoic acid (16:3). Fatty acid phytyl esters were localized to chloroplasts, in particular to thylakoids and plastoglobules. Different polyunsaturated acyl groups were found in phytyl esters accumulating in Arabidopsis lipid mutants and in other plants, including 16:3 and 18:3 species. Therefore N deficiency in higher plants results in a co-ordinated breakdown of galactolipids and chlorophyll with deposition of specific fatty acid phytyl esters in thylakoids and plastoglobules of chloroplasts.  相似文献   

11.
Lipids and fatty acids of Ectocarpus fasciculatus (Ectocarpales,Phaeophyceae) were analyzed. Major polar lipids are monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), diacylglycerylhydroxymethyl-N,N,N-trimethyl-rß-alanine(DGTA), phosphatidylcholine (PC), phospha-tidylethanolamine(PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI).Diphosphatidylglycerol (DPG), phosphatidic acid (PA) and phosphatidyl-O-[N-(2-hydroxy-ethyl)glycine](PHEG) were also present in small amounts. Nonpolar lipids mainlyconsist of triacylglycerol (TAG) and diacylglycerol (DAG). Majorfatty acids are 16:0,18:1, 18:3, 18:4, 20:4 and 20:5. The positionaldistribution of fatty acids showed that molecular species ofeukaryotic structure account for 99% in MGDG, 98% in DGDG, 62%in PG and 23% in SQDG. On incubation with [1-14C]18:1 for 30min, 33% of the total label was detected in TAG, 16% in PG,14% in PE, 10% in PC and 8% in MGDG. During 7 days of chase,the label in TAG, PG, PE and PC decreased and simultaneouslyincreased in MGDG up to 41% of the total. In SQDG, labelledfatty acids were found in prokaryotic as well as in eukaryoticmolecular species. During the experiment, the label shiftedfrom 18:1 to 18:2, 18:3, 18:4 and, to a minor extent, to 20:4and 20:5 acids indicating 18:1 to be processed by elongationand/or desaturation. These results suggest TAG to act as a majorprimary acceptor of exogenous oleate and to be involved in thetransfer of fatty acids to MGDG and other polar lipids. (Received March 24, 1997; Accepted June 11, 1997)  相似文献   

12.
A sensitive method based on electrospray ionization tandem mass spectrometry was used to profile glycerolipids in Pyropia haitanensis and their changes responding to agaro-oligosaccharides. Ten monogalactosyldiacylglycerols (MGDGs), twelve digalactosyldiacylglycerols (DGDGs), five sulfoquinovosyldiacylglycerols (SQDGs), five phosphatidylglycerols (PGs), fifteen phosphatidylcholins (PCs), three phosphatidic acids (PAs), and three phosphatidylethanolamines (PEs) were identified in P. haitanensis. We found the SQDG was the most abundant species, followed by MGDG, DGDG, PG, PC, PE, and PA of the total glycerolipids. The predominant lipid species contained C20 fatty acids at sn-1/sn-2 positions, which was different from higher plants. Changes in membrane lipid species occurred when P. haitanensis were treated with agaro-oligosaccharides. At first, agaro-oligosaccharides induced an increase in total glycerolipids including the galactolipids such as MGDG (20:5/20:5) and phospholipids such as PC (18:3/20:5), suggesting that agaro-oligosaccharides caused changes of lipids in chloroplasts and plasma membrane. With increased treatment time, a large decline in major plasma membrane lipids (PCs and PEs) was observed, but not galactolipids (MGDGs and DGDGs), suggesting that the lipid changes occurred mainly at the plasma membrane after prolonged treatment.  相似文献   

13.
The changes of galactolipids (MGDG and DGDG, largely 18:3/18:3), free fatty acids (FFA), and phosphatidylcholine (PC) taking place during senescence of primary barley leaves were analysed employing HPLC and GLC. Upon induction of senescence MGDG and, with some delay, DGDG began to disappear and were largely broken down at the end of the senescence period. A concomitant appearance of a pool of FFA could not be observed. However, PC accumulated during the main period of galactolipid breakdown. This change was due to the marked increase of the 18:3/18:3 molecular species of PC. An inverse correlation between the changes of galactolipids and PC could be established. A hypothesis featuring the conversion of galactolipids via diacylglycerol to PC is presented as the principal route of galactolipid breakdown.  相似文献   

14.
Precise structural identification of photosynthetic polar glycerolipids in microalga Tetraselmis chuii has been established using Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS) by direct analysis of the total lipids extract. The mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in both positive and negative modes. The structural determination was based on the characteristic product ions yielded by different glycerolipids under ESI-MS/MS mode, and confirmed the molecular species by the carboxylate anions produced by glycerolipids in the negative mode. As a result, more than 40 lipid molecular species, including 11 monogalactosyldiacylglycerols (MGDG), 7 digalactosyldiacylglycerols (DGDG), 16 sulfoquinovosyldiacylglycerols (SQDG), and 9 phosphatidylglycerols (PG), were detected in Tetraselmis chuii, which had never been identified before in this microalga. Furthermore, some intact lipid molecules with hydroxylated fatty acids that could not be detected by the traditional GC-MS method were found this time, providing novel information for the photosynthetic lipidome of Tetraselmis chuii. Comparative studies on fatty acids at the sn-2 position showed that SQDG and MGDG are dominantly biosynthesized through the prokaryotic pathway, PG is a typically mixed biosynthetic pathway, while DGDG is somewhat peculiar with C14:0 and C16:0 at its sn-2 position. This method could provide a full structural profile of intact photosynthetic lipid molecular species, which may be applied to study the physiological and ecological functions of lipid by monitoring their individual changes. Supported by the Program for Changjiang Scholars and Innovative Research Team in Universities (PCSIRT) (Grant No. IRT0734), Project of National Ocean Bureau (Grant No. 200805067), Project of Ministry of Science and Technology (Grant No. 2007BAD43B09), and K. C. Wong Magna Fund in Ningbo University  相似文献   

15.
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.  相似文献   

16.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

17.
C Alban  J Joyard    R Douce 《The Biochemical journal》1989,259(3):775-783
The availability of methods to fractionate non-green plastids and to prepare their limiting envelope membranes [Alban, Joyard & Douce (1988) Plant Physiol. 88, 709-717] allowed a detailed analysis of the biosynthesis of lysophosphatidic acid, phosphatidic acid, diacylglycerol and monogalactosyl-diacylglycerol (MGDG) in two different types of non-green starch-containing plastids: plastids isolated from cauliflower buds and amyloplasts isolated from sycamore cells. An enzyme [acyl-ACP (acyl carrier protein):sn-glycerol 3-phosphate acyltransferase) recovered in the soluble fraction of non-green plastids transfers oleic acid from oleoyl-ACP to the sn-1 position of sn-glycerol 3-phosphate to form lysophosphatidic acid. Then a membrane-bound enzyme (acyl-ACP:monoacyl-sn-glycerol 3-phosphate acyltransferase), localized in the envelope membrane, catalyses the acylation of the available sn-2 position of 1-oleoyl-sn-glycerol 3-phosphate by palmitic acid from palmitoyl-ACP. Therefore both the soluble phase and the envelope membranes are necessary for acylation of sn-glycerol 3-phosphate. The major difference between cauliflower (Brassica oleracea) and sycamore (Acer pseudoplatanus) membranes is the very low level of phosphatidate phosphatase activity in sycamore envelope membrane. Therefore, very little diacylglycerol is available for MGDG synthesis in sycamore, compared with cauliflower. These findings are consistent with the similarities and differences described in lipid metabolism of mature chloroplasts from 'C18:3' and 'C16:3' plants (those with MGDG containing C18:3 and C16:3 fatty acids). Sycamore contains only C18 fatty acids in MGDG, and the envelope membranes from sycamore amyloplasts have a low phosphatidate phosphatase activity and therefore the enzymes of the Kornberg-Pricer pathway have a low efficiency of incorporation of sn-glycerol 3-phosphate into MGDG. By contrast, cauliflower contains MGDG with C16:3 fatty acid, and the incorporation of sn-glycerol 3-phosphate into MGDG by the enzymes associated with envelope membranes is not limited by the phosphatidate phosphatase. These results demonstrate that: (1) non-green plastids employ the same biosynthetic pathway as that previously established for chloroplasts (the formation of glycerolipids is a general property of all plastids, chloroplasts as well as non-green plastids), (2) the envelope membranes are the major structure responsible for the biosynthesis of phosphatidic acid, diacylglycerol and MGDG, and (3) the enzymes of the envelope Kornberg-Pricer pathway have the same properties in non-green starch-containing plastids as in mature chloroplasts from C16:3 and C18:3 plants.  相似文献   

18.
The positional distribution of fatty acids in chloroplast polar lipids and phosphatidylcholine from leaves of four plants has been measured in order to determine the origin of the diacylglycerol (DAG) moieties of each lipid. In spinach and tobacco, the DAG of sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG) and digalactosylglycerol (DGDG) were derived partly from the chloroplast and partly from the cytoplasm. The contribution of the chloroplast pathway differed for each lipid, but in both plants the proportion of a lipid derived from that pathway was in the order SQDG greater than MGDG greater than DGDG. In contrast, all the DAG moieties of the three glycolipids of wheat and cucumber were derived from the cytoplasm. The DAG moiety of chloroplast phosphatidylglycerol was synthesized in the chloroplast in all four plants.  相似文献   

19.
对生长在添加有不同浓度的葡萄糖、硫代硫酸钠培养基中的蓝细菌Synechocystis sp.PCC 6803中的甘油酯及其脂肪酸组成进行比较。结果表明:硫代硫酸钠能有效地增加膜脂中硫代异鼠李糖二酰基甘油(SQDG)和磷脂酰甘油(PG)的百分含量,培养基中同时添加葡萄糖时能抵消硫代硫酸钠的这一效应。此外,硫代硫酸钠能显著增加单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)中十六碳酸(C16:0)的百分含量,这一效应也能为葡萄糖消除。硫代硫酸钠不能显著地改变SQDG中C16:0的百分含量,加入葡萄糖时能降低C16:0的百分含量。这些结果说明硫代硫酸钠可能充当一种还原剂使膜脂处于一种低的不饱和状态,同时加入葡萄糖时能降低硫代硫酸钠的还原力。此外,硫代硫酸钠还可作为SQDG合成中的硫供体。  相似文献   

20.
对生长在添加有不同浓度的葡萄糖、硫代硫酸钠培养基中的蓝细菌Synechocystis sp.PCC 6803中的甘油酯及其脂肪酸组成进行比较.结果表明:硫代硫酸钠能有效地增加膜脂中硫代异鼠李糖二酰基甘油(SQDG)和磷脂酰甘油(PG)的百分含量,培养基中同时添加葡萄糖时能抵消硫代硫酸钠的这一效应.此外,硫代硫酸钠能显著增加单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)中十六碳酸(C16:0)的百分含量,这一效应也能为葡萄糖消除.硫代硫酸钠不能显著地改变SQDG中C16:0的百分含量,加入葡萄糖时能降低C16:0的百分含量.这些结果说明硫代硫酸钠可能充当一种还原剂使膜脂处于一种低的不饱和状态,同时加入葡萄糖时能降低硫代硫酸钠的还原力.此外,硫代硫酸钠还可作为SQDG合成中的硫供体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号