首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is the first report on mortality of Spheniscus magellanicus, penguin of South America, caused by Plasmodium tejerai, which was identified using morphological and molecular analyses. Blood stages (trophozoites, meronts and gametocytes) were reported and illustrated. The necropsy revealed marked splenomegaly and pulmonary edema, as well as moderate hepatomegaly and hydropericardium. The histopathology revealed the presence of tissue meronts in the macrophages and endothelial cells of multiple organs. The molecular analyses showed 5.6% of genetic divergence in cytochrome b gene between P. tejerai and Plasmodium relictum. Morphology of blood and tissue stages of P. tejerai is similar to P. relictum; the distinction between these two species requires experience in the identification of avian Plasmodium species. Molecular studies associated with reliably identified morphological species are useful for barcoding and comparisons with previous studies of wildlife malaria infections as well as for posterior phylogenetic and phylogeographic studies. S. magellanicus is a new host record of P. tejerai, which is the virulent parasite and worth more attention in avian conservation and veterinary medicine projects in South America.  相似文献   

2.
Parasites may adversely affect the breeding success and survival of penguins, potentially hampering the viability of their populations. We examined 161 pygoscelid penguins (3 Pygoscelis adeliae, 98 Pygoscelis antarcticus, and 60 Pygoscelis papua) at the South Shetlands Archipelago during the 2010–2011 summer; blood smears were examined for 64 penguins (2 P. adeliae, 18 P. antarcticus, and 44 P. papua), and a PCR test targeting Haemoproteus sp. and Plasmodium sp. was applied for 37 penguins (2 P. adeliae, 17 P. antarcticus, 19 P. papua). No blood parasites were observed, and all PCR tests were negative, leukocyte profiles were similar to those reported in other studies for wild pygoscelid penguins, and all penguins were in good body condition and had no external signs of disease. One specimen of chewing lice (Austrogoniodes sp.) was recorded in one P. antarcticus at King George Island. Ticks (Ixodes uriae) were not observed on the penguins, but were found on the ground near P. antarcticus nests at King George Island. The absence of avian blood parasites in Antarctic penguins is thought to result from the absence of competent invertebrate hosts in the climatic conditions. Predicted climate changes may redefine the geographic distribution of vector-borne pathogens, and therefore, the occurrence of blood parasites and their invertebrate hosts should be monitored regularly in Antarctic birds, particularly in the northernmost Antarctic Peninsula.  相似文献   

3.
This study reports the case of a Manx shearwater (Puffinus puffinus) that died from avian malaria while under care at a rehabilitation center in Espírito Santo, Brazil. The bird was rescued on October 2018, and remained under care until it died suddenly on January 2019. A blood smear produced 8 days before death was negative for parasites, whereas a blood smear produced post-mortem revealed a high parasitemia by a parasite resembling Plasmodium cathemerium. The sequence of a 412 bp segment of the cyt-b gene was identical to that of lineage PADOM09, and phylogenetic analysis corroborated that this parasite was closely-related to known lineages of P. cathemerium. The acuteness and severity of the infection documented in this case suggest that seabirds of the order Procellariiformes might be highly susceptible to Plasmodium infections, raising the concern that avian malaria may present a significant threat to their conservation.  相似文献   

4.
Avian malaria parasites (Plasmodium) occur commonly in wild birds and are an increasingly popular model system for understanding host–parasite co‐evolution. However, whether these parasites have fitness consequences for hosts in endemic areas is much debated, particularly since wild‐caught individuals almost always harbour chronic infections of very low parasite density. We used the anti‐malarial drug MalaroneTM to test experimentally for fitness effects of chronic malaria infection in a wild population of breeding blue tits (Cyanistes caeruleus). Medication caused a pronounced reduction in Plasmodium infection intensity, usually resulting in complete clearance of these parasites from the blood, as revealed by quantitative PCR. Positive effects of medication on malaria‐infected birds were found at multiple stages during breeding, with medicated females showing higher hatching success, provisioning rates and fledging success compared to controls. Most strikingly, we found that treatment of maternal malaria infections strongly altered within‐family differences, with reduced inequality in hatching probability and fledging mass within broods reared by medicated females. These within‐brood effects appear to explain higher fledging success among medicated females and are consistent with a model of parental optimism in which smaller (marginal) offspring can be successfully raised to independence if additional resources become available during the breeding attempt. Overall, these results demonstrate that chronic avian malaria infections, far from being benign, can have significant effects on host fitness and may thus constitute an important selection pressure in wild bird populations.  相似文献   

5.
Avian malaria (Plasmodium relictum) caused significant mortality in wild-caught Magellanic penguins (Spheniscus magellanicus) in 1986 at the Blank Park Zoo in Des Moines, Iowa (USA). In early winter, wild birds were captured off the southern coast of Chile and flown to Detroit, Michigan for a 38 day quarantine. After quarantine, 18 birds were dispersed to Lansing, Michigan, six to a facility in Maine, and 46 to Des Moines, Iowa. Upon arrival in Des Moines, several penguins became weak and inactive, had to be force-fed, and died after 2 days. Gross lesions at postmortem included splenomegaly, hepatomegaly, and pulmonary edema. Histopathological examination revealed numerous intraendothelial schizonts in spleen, lung, liver, heart and kidney. Schizonts were generally 16 to 28 micron by 11 to 16 micron and contained merozoites of two distinct sized (macromerozoites, nuclei 1.0 micron; micromerozoites, nuclei 0.5 micron). Based on the morphology of the abundant exoerythrocytic forms, a tentative diagnosis of avian malaria (Plasmodium sp.) was made. Subsequent transmission electron microscopic examination of schizonts in formalized tissue revealed merozoites with tear-shaped rhoptries. Antimalarial therapy was initiated early but deaths continued for 5 mo. Mortality, which eventually totaled 83%, occurred in three distinct waves, each separated by a hiatus of approximately 1 mo. Despite examinations of repeated blood smears, intraerythrocytic Plasmodium relictum was not detected until late in the outbreak. Diagnosis was based on morphologic characteristics including schizonts with eight to 12 merozoites/segmenter and round gametocytes that displaced and turned the infected erythrocyte nucleus. In addition to malaria, penguins showed evidence of aspergillosis, bacterial enteritis (Escherichia coli; Proteus sp.; and Edwardsiella sp.), and helminthiasis (Contracaecum sp. and Tetrabothrius sp.). Based on gross and histological lesions, disease prevalence in this group of penguins was malaria 58%, aspergillosis 61%, enteritis 60%, helminthiasis 26%. Epidemiologic investigation including group transport history, disease prevalence in co-quarantined birds not sent to Des Moines and climatological data implicated Des Moines as the likely site for initial exposure, although information is not conclusive. Stress and concurrent disease certainly contributed to the severe mortality in this group of penguins infected with P. relictum.  相似文献   

6.
Since the 1970''s, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.  相似文献   

7.
Malaria is a parasitic infection caused by Plasmodium species. Most of the imported malaria in Korea are due to Plasmodium vivax and Plasmodium falciparum, and Plasmodium ovale infections are very rare. Here, we report a case of a 24-year-old American woman who acquired P. ovale while staying in Ghana, West Africa for 5 months in 2010. The patient was diagnosed with P. ovale malaria based on a Wright-Giemsa stained peripheral blood smear, Plasmodium genus-specific real-time PCR, Plasmodium species-specific nested PCR, and sequencing targeting 18S rRNA gene. The strain identified had a very long incubation period of 19-24 months. Blood donors who have malaria with a very long incubation period could be a potential danger for propagating malaria. Therefore, we should identify imported P. ovale infections not only by morphological findings but also by molecular methods for preventing propagation and appropriate treatment.  相似文献   

8.
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.  相似文献   

9.

Background

Severe malaria (SM) is classically associated with Plasmodium falciparum infection. Little information is available on the contribution of P. vivax to severe disease. There are some epidemiological indications that P. vivax or mixed infections protect against complications and deaths. A large morbidity surveillance conducted in an area where the four species coexist allowed us to estimate rates of SM among patients infected with one or several species.

Methods and Findings

This was a prospective cohort study conducted within the framework of the Malaria Vaccine Epidemiology and Evaluation Project. All presumptive malaria cases presenting at two rural health facilities over an 8-y period were investigated with history taking, clinical examination, and laboratory assessment. Case definition of SM was based on the World Health Organization (WHO) criteria adapted for the setting (i.e., clinical diagnosis of malaria associated with asexual blood stage parasitaemia and recent history of fits, or coma, or respiratory distress, or anaemia [haemoglobin < 5 g/dl]). Out of 17,201 presumptive malaria cases, 9,537 (55%) had a confirmed Plasmodium parasitaemia. Among those, 6.2% (95% confidence interval [CI] 5.7%–6.8%) fulfilled the case definition of SM, most of them in children <5 y. In this age group, the proportion of SM was 11.7% (10.4%–13.2%) for P. falciparum, 8.8% (7.1%–10.7%) for P. vivax, and 17.3% (11.7%–24.2%) for mixed P. falciparum and P. vivax infections. P. vivax SM presented more often with respiratory distress than did P. falciparum (60% versus 41%, p = 0.002), but less often with anaemia (19% versus 41%, p = 0.0001).

Conclusion

P. vivax monoinfections as well as mixed Plasmodium infections are associated with SM. There is no indication that mixed infections protected against SM. Interventions targeted toward P. falciparum only might be insufficient to eliminate the overall malaria burden, and especially severe disease, in areas where P. falciparum and P. vivax coexist.  相似文献   

10.
SYNOPSIS. Plasmodium (Huffia) hermani sp. n. is described from wild turkeys (Meleagris gallopavo Linnaeus) in Florida. It produces rounded schizonts with 6–14 nuclei arranged peripherally as a rosette and elongate, slender gametocytes with irregular margins. Asexual stages parasitize all cells in the erythrocyte series and, in heavy infections, predominantly occur in erythroblasts and their precursors. Presence and degree of pigmentation vary with maturity of the host cell. Gametocytes occupy erythrocytes only, with pigment dispersed in black granules throughout the cytoplasm. Cells containing schizonts are often rounded and enlarged and those parasitized by gametocytes may be somewhat distorted in shape by lateral hypertrophy. Host cell nuclei may be displaced, but are not distorted, except slightly by pressure from the parasite. Plasmodium hermani differs from P. (Giovannolaia) durae by producing low level (> 6%), nonlethal parasitemias in turkey poults, an absence of phanerozoites in capillary endothelium of the brain and viscera, and inability to infect chicks. Plasmodium hermani is more like P. (Huffia) elongatum in gametocyte morphology, schizogony in all types of erythrocyte precursors, with gametocytes occurring in erythrocytes only, and concentration of schizonts in heavy infections in bone marrow and spleen. It differs from P. elongatum by its lack of infectivity to passeriform and anseriform hosts and by a strong immune response which develops in infected birds.  相似文献   

11.
The Red Knot (Calidris canutus rufa) is a Nearctic migrant shorebird that breeds in the Canadian Arctic and spends the winter season in coastal sites in South America. A rare case of a blood protozoan was found by molecular analyses from an adult bird captured during spring migration at the last refuelling stopover in Delaware Bay USA in 2006. The parasite was identified as Plasmodium relictum belonging to subgenus Haemamoeba based on the shape of meronts, roundish gametocytes, and its position in the erythrocytes from the blood smears examination. A partial cytochrome b sequence was a 100% match to a sequence of Plasmodium relictum, sequence Genbank accession number: id DQ659543.1 (lineage code haplotype P5). This is the first report of avian malaria in a wild individual of C. c. rufa.  相似文献   

12.

Background

Mortality from severe pediatric falciparum malaria appears low in Oceania but Plasmodium vivax is increasingly recognized as a cause of complications and death. The features and prognosis of mixed Plasmodium species infections are poorly characterized. Detailed prospective studies that include accurate malaria diagnosis and detection of co-morbidities are lacking.

Methods and Findings

We followed 340 Papua New Guinean (PNG) children with PCR-confirmed severe malaria (77.1% P. falciparum, 7.9% P. vivax, 14.7% P. falciparum/vivax) hospitalized over a 3-year period. Bacterial cultures were performed to identify co-incident sepsis. Clinical management was under national guidelines. Of 262 children with severe falciparum malaria, 30.9%, 24.8% and 23.2% had impaired consciousness, severe anemia, and metabolic acidosis/hyperlactatemia, respectively. Two (0.8%) presented with hypoglycemia, seven (2.7%) were discharged with neurologic impairment, and one child died (0.4%). The 27 severe vivax malaria cases presented with similar phenotypic features to the falciparum malaria cases but respiratory distress was five times more common (P = 0.001); one child died (3.7%). The 50 children with P. falciparum/vivax infections shared phenotypic features of mono-species infections, but were more likely to present in deep coma and had the highest mortality (8.0%; P = 0.003 vs falciparum malaria). Overall, bacterial cultures were positive in only two non-fatal cases. 83.6% of the children had alpha-thalassemia trait and seven with coma/impaired consciousness had South Asian ovalocytosis (SAO).

Conclusions

The low mortality from severe falciparum malaria in PNG children may reflect protective genetic factors other than alpha-thalassemia trait/SAO, good nutrition, and/or infrequent co-incident sepsis. Severe vivax malaria had similar features but severe P. falciparum/vivax infections were associated with the most severe phenotype and worst prognosis.  相似文献   

13.
Global warming threatens to increase the spread and prevalence of mosquito‐transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare ‐GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified.  相似文献   

14.

Background

Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG). Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness).

Methodology/Principal Findings

Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis) but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections.

Conclusions/Significance

These results could have an impact on vector infection and transmission dynamics in areas where Anopheles transmit both parasites, i.e., the elimination of filarial worms in a co-endemic locale could enhance malaria transmission.  相似文献   

15.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

16.
Vertebrate hosts of malaria parasites (Plasmodium) often harbour two or more genetically distinct clones of a single species, and interaction among these co-existing clones can play an important role in Plasmodium biology. However, how relative clonal proportions vary over time in a host is still poorly known. Experimental mixed-clone infections of the lizard malaria parasite, Plasmodium mexicanum, were followed in its natural host, the western fence lizard using microsatellite markers to determine the relative proportions of two to five co-existing clones over time (2-3 months). Results for two markers, and two PCR primer pairs for one of those, matched very closely, supporting the efficacy of the method. Of the 54 infections, 67% displayed stable relative clonal proportions, with the others showing a shift in proportions, usually with one clone outpacing the others. Infections with rapidly increasing or slowly increasing parasitemia were stable, showing that all clones within these infections reproduced at the same rapid or slow rate. Replicate infections containing the same clones did not always reveal the same growth rate, final parasitemia or dominant clone; thus there was no clone effect for these life history measures. The rate of increase in parasitemia was not associated with stable versus unstable relative proportions, but infections with four to five clones were more likely to be unstable than those with two to three clones. This rare look into events in genetically complex Plasmodium infections suggests that parasite clones may be interacting in complex and unexpected ways.  相似文献   

17.
Pathogen exposure has been suggested as one of the factors shaping the myriad of migration strategies observed in nature. Two hypotheses relate migration strategies to pathogen infection: the ‘avoiding the tropics hypothesis’ predicts that pathogen prevalence and transmission increase with decreasing non‐breeding (wintering) latitude, while the “habitat selection hypothesis” predicts lower pathogen prevalence in marine than in freshwater habitats. We tested these scarcely investigated hypotheses by screening wintering and resident wading shorebirds (Charadriiformes) for avian malaria blood parasites (Plasmodium and Haemoproteus spp.) along a latitudinal gradient in Australia. We sequenced infections to determine if wintering migrants share malaria parasites with local shorebird residents, and we combined prevalence results with published data in a global comparative analysis. Avian malaria prevalence in Australian waders was 3.56% and some parasite lineages were shared between wintering migrants and residents, suggesting active transmission at wintering sites. In the global dataset, avian malaria prevalence was highest during winter and increased with decreasing wintering latitude, after controlling for phylogeny. The latitudinal gradient was stronger for waders that use marine and freshwater habitats (marine + freshwater) than for marine‐restricted species. Marine + freshwater wader species also showed higher overall avian malaria parasite prevalence than marine‐restricted species. By combining datasets in a global comparative analysis, we provide empirical evidence that migratory waders avoiding the tropics during the non‐breeding season experience a decreased risk of malaria parasite infection. We also find global support for the hypothesis that marine‐restricted shorebirds experience lower parasite pressures than shorebirds that also use freshwater habitats. Our study indicates that pathogen transmission may be an important driver of site selection for non‐breeding migrants, a finding that contributes new knowledge to our understanding of how migration strategies evolve.  相似文献   

18.
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.  相似文献   

19.
Wild great apes are widely infected with a number of malaria parasites (Plasmodium spp.). Yet, nothing is known about the biology of these infections in the wild. Using faecal samples collected from wild chimpanzees, we investigated the effect of age on Plasmodium spp. detection rates. The data show a strong association between age and malaria parasite positivity, with significantly lower detection rates in adults. This suggests that, as in humans, individuals reaching adulthood have mounted an effective protective immunity against malaria parasites.  相似文献   

20.
The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号