首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation.  相似文献   

2.
Sex chromosome complement affects social interactions in mice   总被引:2,自引:1,他引:1  
Sex differences in behavior can be attributed to differences in steroid hormones. Sex chromosome complement can also influence behavior, independent of gonadal differentiation. The mice used for this work combined a spontaneous mutation of the Sry gene with a transgene for Sry that is incorporated into an autosome thus disassociating gonad differentiation from sex chromosome complement. The resulting genotypes are XX and XY females (ovary-bearing) along with XXSry and XYSry males (testes-bearing). Here we report results of basic behavioral phenotyping conducted with these mice. Motor coordination, use of olfactory cues to find a food item, general activity, foot shock threshold, and behavior in an elevated plus maze were not affected by gonadal sex or sex chromosome complement. In a one-way active avoidance learning task females were faster to escape an electric shock than males. In addition, sex chromosome complement differences were noted during social interactions with submissive intruders. Female XY mice were faster to follow an intruder than XX female mice. All XY mice spent more time sniffing and grooming the intruder than the XX mice, with XY females spending the most amount of time in this activity. Finally, XX females were faster to display an asocial behavior, digging, and engaged in more digging than XXSry male mice. All of these behaviors were tested in gonadectomized adults, thus, differences in circulating levels of gonadal steroids cannot account for these effects. Taken together, these data show that sex chromosome complement affects social interaction style in mice.  相似文献   

3.
Karyotypically XY individuals of the C57BL/6J-YPOS mouse stock develop as females or hermaphrodites, but never as normal males. The aberrant sexual development results from the interaction of the C57BL/6J genetic background with the M. poschiavinus-derived Y chromosome. XY females from this stock were assayed for H-Y antigen. By the criteria of skin-grafting, the cell-mediated lympholysis test, and the popliteal lymph node assay, these XY females are antigenically indistinguishable from normal C57BL/6 males. Implications for the hypothesis that H-Y antigen induces formation of the mammalian testis are discussed.  相似文献   

4.
Geographic origin of the Y Chromosomes in “old” inbred strains of mice   总被引:7,自引:0,他引:7  
Six distinct Y Chromosomes (Chr) were identified among 39 standard inbred strains of mice with five probes that identified Y Chr-specific restriction fragments on Southern blots. Three Y Chr types, distributed among 31 strains, were of Asian Mus musculus origin. The remaining three Y Chr types, distributed among eight strains, were of M. domesticus origin. The Asian source of the M. musculus Y Chr was confirmed by determining the DNA sequence of 221 bp from an open reading frame within the Sry (sex determining region Y) gene (Gubbay et al., Nature 346 245–250, 1990) in three inbred strains (C57BL/6J, AKR/J, and SWR/J) and comparing the sequence to the homologous sequences derived from wild caught European and Asian M. musculus males. These data indicate that a minimum of six male mice contributed to the formation of the old inbred strains.  相似文献   

5.
The sex determining region Y gene (Sry) is the strongest candidate to be the testis determining factor gene (Tdy). Several South-American Akodon species have two varieties of Y chromosome. One type transmitted via male specimens induces testis development. The second Y variety fails to induce male gonadal differentiation and gives rise to fully fertile XY females. These variant females test positive for Sry. Moreover, sequencing of a partial open reading frame of the conserved region of Sry from males and XY females shows no sequence difference. Sry is two- to sixfold amplified in six of eight akodont species tested. Since Sry amplification was found in species having and not having XY females, amplification apparently does not in itself play a primary role in the origin of sex reversal. The development of fully fertile ovaries in XY Akodon females is not due to a deletion of Sry or to mutations in the Sry segment analyzed in this report. Sex reversal may be due to abnormal expression of this gene at the stage of gonadal differentiation. Alternatively, other genes in the sex-determining pathway may be involved. Several of the Akodon species showing Sry amplification also have amplification of Zfy, which may map to the same region of the Akodon Y chromosome.  相似文献   

6.
The gene responsible for testis induction in normal male mammals is the Y‐linked Sry. However, there is increasing evidence that other genes may have testis‐determining properties. In XX sex reversal (XXSR), testis tissue develops in the absence of the Y chromosome. Previous polymerase chain reaction (PCR) assays indicated that autosomal recessive XXSR in the American cocker spaniel is Sry‐negative. In this study, genomic DNA from the breeding colony of American cocker spaniels and from privately owned purebred dogs were tested by PCR using canine primers for the Sry HMG box and by Southern blots probed with the complete canine Sry coding sequence. Sry was not detected by either method in genomic DNA of affected American cocker spaniels or in the majority (20/21) of affected privately owned purebred dogs. These results confirm that the autosomal recessive form of XXSR in the American cocker spaniel is Sry‐negative. In combination with previous studies, this indicates that Sry‐negative XXSR occurs in at least 15 dog breeds. The canine disorder may be genetically heterogeneous, potentially with a different mutation in each breed, and may provide several models for human Sry‐negative XXSR. A comparative approach to sex determination should be informative in defining the genetic and cellular mechanisms that are common to all mammals. Mol. Reprod. Dev. 53:266–273, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.

Background

Both coxsackievirus B3 (CVB3) and influenza A virus (IAV; H1N1) produce sexually dimorphic infections in C57BL/6 mice. Gonadal steroids can modulate sex differences in response to both viruses. Here, the effect of sex chromosomal complement in response to viral infection was evaluated using four core genotypes (FCG) mice, where the Sry gene is deleted from the Y chromosome, and in some mice is inserted into an autosomal chromosome. This results in four genotypes: XX or XY gonadal females (XXF and XYF), and XX or XY gonadal males (XXM and XYM). The FCG model permits evaluation of the impact of the sex chromosome complement independent of the gonadal phenotype.

Methods

Wild-type (WT) male and female C57BL/6 mice were assigned to remain intact or be gonadectomized (Gdx) and all FCG mice on a C57BL/6 background were Gdx. Mice were infected with either CVB3 or mouse-adapted IAV, A/Puerto Rico/8/1934 (PR8), and monitored for changes in immunity, virus titers, morbidity, or mortality.

Results

In CVB3 infection, mortality was increased in WT males compared to females and males developed more severe cardiac inflammation. Gonadectomy suppressed male, but increased female, susceptibility to CVB3. Infection with IAV resulted in greater morbidity and mortality in WT females compared with males and this sex difference was significantly reduced by gonadectomy of male and female mice. In Gdx FCG mice infected with CVB3, XY mice were less susceptible than XX mice. Protection correlated with increased CD4+ forkhead box P3 (FoxP3)+ T regulatory (Treg) cell activation in these animals. Neither CD4+ interferon (IFN)γ (T helper 1 (Th1)) nor CD4+ interleukin (IL)-4+ (Th2) responses differed among the FCG mice during CVB3 infection. Infection of Gdx FCG mice revealed no effect of sex chromosome complement on morbidity or mortality following IAV infection.

Conclusions

These studies indicate that sex chromosome complement can influence pathogenicity of some, but not all, viruses.  相似文献   

8.
C57BL/6J (B6) mice containing the Mus domesticus poschiavinus Y chromosome, YPOS, develop ovarian tissue, whereas testicular tissue develops in DBA/2J or 129S1/SvImJ (129) mice containing the YPOS chromosome. To identify genes involved in sex determination, we used a congenic strain approach to determine which chromosomal regions from 129Sl/SvImJ provide protection against sex reversal in XYPOS mice of the C57BL/6J.129-YPOS strain. Genome scans using microsatellite and SNP markers identified a chromosome 11 region of 129 origin in C57BL/6J.129-YPOS mice. To determine if this region influenced testis development in XYPOS mice, two strains of C57BL/6J-YPOS mice were produced and used in genetic experiments. XYPOS adults homozygous for the 129 region had a lower incidence of sex reversal than XYPOS adults homozygous for the B6 region. In addition, many homozygous 129 XYPOS fetuses developed normal-appearing testes, an occurrence never observed in XYPOS mice of the C57BL/6J-YPOS strain. Finally, the amount of testicular tissue observed in ovotestes of heterozygous 129/B6 XYPOS fetuses was greater than the amount observed in ovotestes of homozygous B6 XYPOS fetuses. We conclude that a chromosome 11 locus derived from 129Sl/SvImJ essentially protects against sex reversal in XYPOS mice. A number of genes located in this chromosome 11 region are discussed as potential candidates.  相似文献   

9.
10.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

11.
The sex-determining region Y is a gene located in the distal portion of the short arm of human (SRY) and mouse (Sry) Y chromosomes and considered to be the best candidate for the testis determining factor (TDF/Tdy). The gene is believed to be the key factor in sex differentiation in mammals and is conserved across mammalian species. We report herein that the SRY/Sry gene has been assigned to pi 2-p13 on the short arm of the Y chromosome in pig by in situ hybridization. The result confirms interspecies conservation of this chromosomal segment in the evolution of mammalian chromosomes, and suggests further use of this gene probe in genomic studies in other mammals. The assignment of the Sry gene is the second physical gene mapping data available for the Y chromosome in pigs. Such data can be used in the effort of constructing the pig gene map and for further establishment of a comparison of sex chromosome morphology in different mammalian species concerning sex-specific and pseudoautosomal regions.  相似文献   

12.
The dominant hemimelia(Dh) mutation causes various developmental abnormalities in mice. Most -Dh/+ males, crosses between DDD females and DH-Dh/+ males, have lethal abnormalities during the neonatal period. This is a consequence of synergism among three independent gene loci; that is, theDh allele on chromosome (Chr) 1, the DDD allele on an X Chr-linked locus, and a Y Chr-linked locus in some strains. With regard to the Y Chr derived fromMus musculus musculus (M. m. musculus), the Y Chrs of C57BL/6J and BALB/cA caused lethality, but the Y Chr of C3H/HeJ did not, suggesting that not allM. m. musculus Y Chrs are the same. In the present study, whether Y Chrs derived fromM. m. domesticus andM. m. castaneus could cause lethality was investigated. Among seven inbred strains, including AKR/J, DDD, RF/J, SJL/J, SWR/J, TIRANO/Ei, and CAST/Ei, Y Chrs of AKR/ J, DDD, SJL/J, SWR/J, and TIRANO/Ei caused lethality, but Y Chrs of RF/J and CAST/Ei did not. It was unlikely that the mitochondrial genome of the DDD strain contributed to the lethality. The X Chr-linked locus could not compensate for the role of the Y Chr-linked locus. These results suggest that not allM. m. domesticus Y Chrs are the same.  相似文献   

13.
14.
Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X‐chromosome and a unique second sex chromosome creating the following genotypes: XY*x, XX, XY*, XXY*. This Y* mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X‐chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X‐chromosomes. We present data showing, in addition to genes reported to escape X‐inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X‐chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y* model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.  相似文献   

15.
16.
F G Biddle  Y Nishioka 《Génome》1988,30(6):870-878
The Y chromosome of Mus musculus poschiavinus interacts with the autosomal recessive gene tda-1b of the C57BL/6J laboratory strain of the house mouse to cause complete or partial sex reversal. Ovaries or ovotestes develop in a substantial proportion of the XY fetuses. Several different Y-specific DNA probes distinguish two major types of Y chromosome in the house mouse and they are represented by M. m. domesticus and M. m. musculus. The poschiavinus Y chromosome appears identical to the domesticus Y. The developmental distribution of the gonad types was examined in the first backcross or N2 generation of fetuses in C57BL/6J with six different domesticus-type Y chromosomes and, as controls, three different musculus-type Y chromosomes. Gonadal hermaphrodites were found with three of the six domesticus-type Y chromosomes. Both overall frequency and phenotypic distribution of types of gonadal hermaphrodites identify three classes of domesticus-type Y chromosome by their differential interaction with the C57BL/6J genetic background.  相似文献   

17.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

18.
19.
The levels of expression and genomic organization of genes coding for the major urinary proteins (MUPs) were examined in several stocks of wild-derived mice. Levels of MUP mRNA in the liver varied considerably with M. musculus Brno and M. castaneus males having several-fold more MUP RNA than inbred C57BL/6 males, whereas M. hortulanus, M. caroli and M. cervicolor displayed levels much lower than C57BL/6. Analysis of RNA with MUP cDNAs specific to two different subfamilies of MUP genes revealed that M. caroli and M. cervicolor primarily expressed a MUP mRNA that was less abundant in C57BL/6, suggesting differential expression of subfamilies of genes within the MUP multigene complex. Although inbred males usually have five-fold more MUP mRNA than inbred females, male to female ratios for wild-derived stocks ranged from one to several hundred. Southern blots of genomic DNA hybridized to MUP subfamily probes revealed differences in restriction fragment sizes as well as possible variation in the number of MUP genes in some species. Analysis of urinary proteins from hybrids between C57BL/6 and M. spretus suggested that low MUP expression in M. spretus females was due to cis-acting genetic elements.  相似文献   

20.
In situ hybridization of biotin-labeled mouse major satellite DNA clone pMR196 was applied toMus domesticus andMus spretus chromosomes (Chr). The same karyotypes were counterstained with distamycin A-DAPI to identify AT-rich heterochromatin. Chromosomes from the laboratory mouse, C57BL/6Ros (BL/6;M. domesticus) were uniformly labeled at the centromere except for the Y, while chromosomes from the divergentMus speciesM. spretus showed little or no hybridization. Differences betweenMus species in copy number of the major satellite DNA sequence were used to identify chromosomes ofM. domesticus andM. spretus in their F1 hybrids and to discriminatedomesticus andspretus centromeres in backross progeny. The distribution pattern of heterochromatic regions demonstrated by distamycin A-DAPI counterstaining was comparable with that of in situ hybridization with pMR196, suggesting that A-T rich heterochromatin inM. domesticus is mainly constructed by the pMR196-related sequence. The in situ technique was used to examine segregation ofdomesticus centromeres in backcross progeny obtained by mating F1 hybrid females withM. domesticus orM. spretus males. The segregation of centromeres did not deviate from the expected among the backcross progeny from C57BL/6Ros males, whereas chromosomes withM. domesticus centromeres were prone to appear in the progeny from backcross matings byM. spretus males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号