首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Growth experiments were conducted on Lactobacillus amylovorus DN-112 053 in batch culture, with or without pH regulation. Conjugated bile salt hydrolase (CBSH) activity was examined as a function of culture growth. The CBSH activity increased during growth but its course depended on bile salts type and culture conditions. A Lact. amylovorus mutant was isolated from the wild-type strain of Lact. amylovorus DN-112 053 after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. An agar plate assay was used to detect mutants without CBSH activity. In resting cell experiments, the strain showed reduced activity. Differences between growth parameters determined for wild-type and mutant strains were not detected. Comparative native gel electrophoresis followed by CBSH activity staining demonstrated the loss of proteins harbouring this activity in the mutant. Four protein bands corresponding to CBSH were observed in the wild-type strain but only one was detected in the mutant. The specific growth rate of the mutant strain was affected more by bile salts than the wild-type strain. Nevertheless, bile was more toxic for the wild-type strain. In viability studies in the presence of nutrients, it was demonstrated that glycodeoxycholic acid exerted a higher toxicity than taurodeoxycholic acid in a pH-dependent manner. No difference was apparent between the two strains. In the absence of nutrients, the wild-type strain died after 2 h whereas no effect was observed for the mutant. The de-energization experiments performed using the ionophores nigericin and valinomycin suggested that the chemical potential of protons (ZDeltapH) was involved in Lactobacillus bile salt resistance.  相似文献   

2.
AIMS: To study Bacillus clausii from a pharmaceutical product (Enterogermina O/C, N/R, SIN, T) and reference strains (B. clausii and Bacillus subtilis) for eco-physiological aspects regarding the gut environment. METHODS AND RESULTS: Spores and vegetative cells were challenged in vitro miming the injury of gastrointestinal transit: pH variations, exposure to conjugated and free bile salts, microaerophilic and anaerobic growth. No relevant differences were found studying the growth at pH 8 and 10, whereas at pH 7 the yields obtained for O/C and SIN were higher than those obtained for N/R and T strains. The spores were able to germinate and grow in the presence of conjugated bile salts (up to 1%, w/v) or free bile salts (0.2%) and also exhibited tolerance for the combined acid-bile challenge. As evidenced by lag-time, growth rate and cell yield the tolerance of Enterogermina isolates for conjugated salts was comparable with that of B. clausii type strain (DSM 8716(T)), and resulted higher than that observed for B. subtilis (ATCC 6051(T)). All the considered B. clausii strains demonstrated microaerophilic growth, but only some grew anaerobically in a nitrate medium. CONCLUSIONS: The ability of B. clausii spores to germinate after an acid challenge and grow as vegetative cells both in the presence of bile and under limited oxygen availability is consistent with the beneficial health effects evidenced for spore-forming probiotics in recent clinical studies. SIGNIFICANCE AND IMPACT OF THE STUDY: The experimental evidence from this study emphasizes some functional properties of B. clausii strains regarding their use as probiotics.  相似文献   

3.
The influence of fructooligosaccharides (FOS) and their monomeric components on bile salt resistance of Bifidobacterium breve ATCC 15700, Bif. longum ATCC 15707 and Bif. animalis ATCC 25527 was examined. The neosugars induced fructofuranosidase activities for the degradation of these saccharides. For the three strains tested the growth was identical and bile salts had the same inhibitory effect on growth whatever the carbohydrate used. The survival of Bif. breve and Bif. longum, in the presence of glycodeoxycholic acid depended, however, on carbohydrates: the toxic effects of the bile salt could be partly alleviated by the addition of a metabolizable C-source. For Bif. animalis, the presence of any carbohydrate in the incubation medium did not enhance the viability of the strain. But in the three deconjugating strains of bifidobacteria studied, the presence of neosugar during the growth led to improved resistance to the bactericidal effect of the bile salt compared with the monomeric components of these neosugars (glucose and fructose).  相似文献   

4.
The effect of the conjugated bile acid (BA) on the microbial internal pH (pHin) values in lactic acid bacteria with and without ability to hydrolyze bile salts (BSH[+] and BSH[-] strains, respectively) was evaluated. BSH(+) strains showed a gradual increase in the pHin following the addition of conjugated BA; this behavior was more pronounced with GDCA than with TDCA may be due to the higher affinity of BSH for the glyco-conjugates acids. Conversely, the BSH(-) strains showed a decrease in internal pH probably as a consequence of weak acid accumulation. As expected, a decrease in the cytoplasmatic pH affected the cell survival in this last group of strains, while the BSH(+) strains were more resistant to the toxic effect of BA. PURPOSE OF WORK: To evaluate bile salt hydrolase activities, changes in the internal pH and cell survival to bile acids in lactic acid bacteria to establish the relationship between these parameters.  相似文献   

5.
Hypercholesterolemia has been reported to be the main cause of cardiovascular diseases and the leading cause of death. Therefore, decreasing serum cholesterol level is very important for preventing the cardiovascular diseases. It has been supposed that probiotics in human gastrointestinal tract have the ability to decrease serum cholesterol level by reducing the absorption of cholesterol from the intestinal tract and the bile salt deconjugation. In this study, 28 strains of Lactobacillus spp., isolated from breast-fed infant’s feces, were identified and investigated for their bile salt deconjugation ability. The deconjugation ability of the strains was determined by the release of cholic acid resulting from the deconjugation of conjugated bile salts. Research results showed that four of the strains had bile salt deconjugation ability. The strains with deconjugation ability have been identified in species level by using biochemical test, and molecular techniques, API 50CHL test and 16S rRNA gene sequence analysis respectively. LP1, E3, and E9 strains with deconjugation activity were identified as Lactobacillus rhamnosus and GD2 strain as Lactobacillus plantarum. Even if oxgall decreases the viability of bacteria, the highest amount of cholesterol precipitation (42%) was performed by GD2 strain in the presence of 0.3% (w/v) bile. This study demonstrated that the identified Lactobacillus strains had an excellent ability to survive at low pH, a high bile deconjugation ability, and hypocholesterolemic effect in in vitro conditions.  相似文献   

6.
The effect of six different conjugated bile salts (two trihydroxyconjugated bile salts: tauro and glycocholic acids; and four dihydroxyconjugated bile salts: tauro- and glycochenodeoxycholic, tauro- and glycodeoxycholic acids) on eight bifidobacteria strains were studied. A strong growth-inhibitory effect was observed (80% at 0.95mm) for each bile salt and strain. This phenomenon was explained by the production of deconjugated bile salt during bifidobacteria growth. The deconjugation phenomenon was concurrent with biomass production, and deconjugated bile salts were the sole compound produced during bifidobacteria biotransformation. In resting cell experiments, differences appeared between the strains and the kind of bile salts, particularly concerning taurocholic acid. The Bifidobacterium longum strains were the most efficient among the bacteria tested.  相似文献   

7.
Significance of bile salt hydrolytic activities of lactobacilli   总被引:10,自引:0,他引:10  
Bile salt hydrolase (BSH) activity was shown to be constitutive and substrate-specific: the BSH isogenic Lactobacillus plantarum wild type (LP80 WT) and BSH overproducing LP80 (pCBH1) strains preferentially hydrolysed glycodeoxycholic acid (GDCA), whereas the hamster Lact. animalis isolates H362 and H364 showed a higher affinity for taurodeoxycholic acid (TDCA). In viability studies in the presence of nutrients, it was demonstrated that GDCA exerted a higher toxicity than TDCA in a pH-dependent manner. This toxicity was inversely proportionate to the BSH activity level of the strains tested, indicating that BSH activity contributed towards bile salt resistance when appropriate nutrients were available. The high toxicity of GDCA relative to TDCA was suggested to be caused by their weak and strong acid properties respectively. It was therefore hypothesized that the protonated form of bile salts exhibited toxicity as it imported protons in the cell. This puts an energy-burden on BSH lactobacilli which undergo intracellular acidification. BSH+ cells primarily protect themselves through the formation of the weaker DCA compound, which can help negate the pH-drop by recapturing and exporting the co-transported proton. However, since DCA is more toxic than its conjugated counterparts, an additional energy-dependent detoxification of DCA is suggested.  相似文献   

8.
To determine the conditions of cholesterol assimilation, various strains of Bifidobacterium species were cultured in the presence of cholesterol and bile salts. During culturing, Bifidobacterium breve ATCC 15700 assimilates cholesterol in the presence of oxgall at pH values lower than 6. This strain was selected to study the influence of conjugated (taurocholic acid) and deconjugated (cholic acid) bile salts on cholesterol assimilation. B. breve ATCC 15700 assimilated cholesterol (up to 51%) when cultures were undertaken in the presence of taurocholic acid, whereas less than 13% of the initial amount of cholesterol was measured in the cells in the presence of cholic acid. Cultured in the presence of six individual di- or trihydroxyconjugated bile salts, bifidobacteria strains assimilated cholesterol. This assimilation appeared to be more important in the presence of trihydroxyconjugated bile salts (tauro- and glycocholic acids). It is concluded that trihydroxyconjugated bile salts are involved in the assimilation of cholesterol by bifidobacteria. Received: 20 June 1996 / Accepted: 19 July 1996  相似文献   

9.
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.  相似文献   

10.
Bacteria of numerous species isolated from the human gastrointestinal tract express bile salt hydrolase (BSH) activity. How this activity contributes to functions of the microorganisms in the gastrointestinal tract is not known. We tested the hypothesis that a BSH protects the cells that produce it from the toxicity of conjugated bile salts. Forty-nine strains of numerous Lactobacillus spp. were assayed to determine their capacities to express BSH activities (taurodeoxycholic acid [TDCA] hydrolase and taurocholic acid [TCA] hydrolase activities) and their capacities to resist the toxicity of a conjugated bile acid (TDCA). Thirty of these strains had been isolated from the human intestine, 15 had been recovered from dairy products, and 4 had originated from other sources. Twenty-six of the strains expressed both TDCA hydrolase and TCA hydrolase activities. One strain that expressed TDCA hydrolase activity did not express TCA hydrolase activity. Conversely, in one strain for which the assay for TDCA hydrolase activity gave a negative result there was evidence of TCA hydrolase activity. Twenty-five of the strains were found to resist the toxicity of TDCA. Fourteen of these strains were of human origin, nine were from dairy products, and two were from other sources. Of the 26 strains expressing both TDCA hydrolase and TCA hydrolase activities, 15 were resistant to TDCA toxicity, 6 were susceptible, and 5 gave inconclusive results. Of the 17 strains that gave negative results for either of the enzymes, 7 were resistant to the toxicity, 9 were susceptible, and 1 gave inconclusive results. These findings do not support the hypothesis tested. They suggest, however, that BSH activity is important at some level for lactobacillus colonization of the human intestine.  相似文献   

11.
The aim of this study was to investigate some probiotic properties of 42 wild Lactobacillus plantarum strains isolated from different Italian foods of animal origin. The strains were first screened for their antibiotic resistance profile (chloramphenicol, erythromycin, gentamicin, and tetracycline), subsequently they were tested for their in vitro resistance to lysozyme (100 mg L?1), low pH (3.0, 2.5 and 2.0) and bile salts (0.3, 0.5 and 1.0 %). Moreover, agglutination property was studied (adhesion to Saccharomyces cerevisiae cells), as well as the presence of bsh and msa genes. The strains with the best characteristics were subjected to a further trial in order to evaluate their ability to survive to multiple stresses over time (lysozyme, low pH and bile salts) and the effect of these treatments on adhesion to yeast cells. All the strains were susceptible to chloramphenicol, erythromycin and gentamicin, while 6 strains were excluded from further evaluation because of their resistant phenotype against tetracycline. All the strains were able to grow in presence of lysozyme, as well as in MRS broth at pH 3.0. Only 4 strains showed a growth rate lower than 80 % when grown in MRS broth at pH 2.5, while a relevant growth rate decrease was observed after exposure to pH 2.0. Bile salts didn’t affect the viability of the L. plantarum cells. Twenty-one strains out of 33 tested strains were able to adhere to S. cerevisiae cells. Presence of both bsh and msa genes was detected in 6 strains. The strains resistant to all the stresses, positive to agglutination with S. cerevisiae and showing bsh and msa genes were selected for further evaluation and subjected to different stress treatments over time. The assessment of growth rates showed that exposure to lysozyme significantly increased low pH resistance in L. plantarum. This increase ranged from 2.35 to 15.57 %. The consequential lysozyme and low pH exposures didn’t affect the growth rate values after bile salts treatment, as well as the ability of the strains to adhere to yeast cells wasn’t modified by previous treatments (lysozyme, low pH and bile salts). The present work allows to increase knowledge about non starter lactic acid bacteria from Italian food products. The studied L. plantarum strains showed a good potential for their use as probiotic cultures. However, more in vivo tests are necessary to confirm this potentiality.  相似文献   

12.

Aims

To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01.

Methods and Results

The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l?1 isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel–nitrilotriacetic acid (Ni2+‐NTA) agarose column and their activities characterized. BSH A hydrolysed tauro‐conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco‐conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety.

Conclusions

BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate‐binding sites, these remain functional through motif conservation.

Significance and Impact of the Study

This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco‐conjugated or tauro‐conjugated bile salts. Future structural homology studies and site‐directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes.  相似文献   

13.
Physiochemical damage of egg phosphatidylcholine liposomes, caused by the salts of three bile acids, chenodeoxycholic acid, ursodeoxycholic acid, and cholic acid, has been investigated. Of the three bile salts, that of chenodeoxycholic acid was the most destructive, and the effect of the damage was examined by monitoring the induced 6-carboxyfluorescein release from the liposomes. For all three of the bile salts and under the experimental conditions, the minimum (effective) concentrations causing the 6-carboxyfluorescein release were below their critical micelle concentrations. In the case of the salt of chenodeoxycholic acid, the presence of cholesterol in the liposomal bilayers did not show any significant effect on the induced 6-carboxyfluorescein release, while, for the salts of ursodeoxycholic acid and cholic acid, the presence of cholesterol tended to depress the release. Permeation of bile salts into the membranes of liposomal bilayers made these membranes more fluid, and this fluidity was monitored by measuring the change in fluorescence polarization using 1,6-diphenylhexatriene entrapped in the liposomes. Coating the liposomes with polysaccharides, to make them more hydrophobic, led to their easier lysis by the bile salts.  相似文献   

14.
The effects of bile salts on the survival of lactobacilli were investigated using glycocholic acid, cholic acid and deoxycholic acid as model compounds and the bile salt hydrolase active Lactobacillus plantarum 80 (BSH+) and its BSH negative mutant. The detrimental effects of cholic acid, i.e. growth inhibition and cytotoxicity at a concentration of 1 and 5 mmol l−1, respectively, were considered to be due to the hydrophobic protonated form of the molecule, which brings about membrane damage. The conversion of glycocholic acid to cholic acid by the BSH active L. plantarum 80 caused a growth inhibition which was comparable with the inhibition observed in the broth supplemented with 1 mmol l−1 cholic acid. Deoxycholic acid caused toxicity through membrane damage when the compound was in solution. Its toxicity disappeared in the culture broth as the molecule precipitated. In case of cholic acid, the toxicity could be removed by buffering the solution at pH 7·0. It was calculated that at this pH most of the cholic acid molecules were ionized. The results led to the formulation of an extended hypothesis about the ecological significance of bile salt transformations. Primary deconjugation is carried out to counteract intracellular acidification. Yet, the deconjugated molecule can be harmful at moderately acidic pH-values. In this case, the BSH+ strains could effectively profit from their activity in case they are associated with 7α-dehydroxylating bacteria which dehydroxylate the deconjugated bile salts. The dehydroxylated molecule has a low solubility and precipitates at moderately acidic pH.  相似文献   

15.
Summary Growing cells of Bifidobacterum bifidum NRRL 1976 exhibited an ability to remove cholesterol in the presence of bile salts. The cholesterol removal by Bifidobacterium bifidum was due to a co-precipitation together with unconjugated bile acids, which was linked to the bile salt hydrolase (BSH) activity of the cells at pH values lower than 5.0 and the cholesterol removed was partially recovered when the cells were washed with phosphate buffer at pH 7, while the remaining cholesterol was extracted from the cells. It is concluded that the removal of cholesterol from the growth medium by Bifidobacterium bifidum strain is due to both bacterial assimilation and precipitation of cholesterol.  相似文献   

16.
Darilmaz DO  Beyatli Y 《Anaerobe》2012,18(1):122-127
In this study, a total of 29 Propionibacterium spp. were isolated from traditional home-made Turkish cheese samples. As a result of the identification, isolates were identified as Propionibacterium freudenreichii subsp. freudenreichii (15 strains), Propionibacterium jensenii (12), and Propionibacterium thoenii (2). All isolates and 5 reference strains were examined for their abilities to survive at pH 2.0, 3.0, 4.0, 5.0 and in the presence of 0.06, 0.15 and 0.30% bile salts, their influence on the growth of food-borne and spoilage bacteria, as well as their sensitivity against 11 selected antibiotics. Only seven propionibacteria strains survived in both the acidic and bile salt environments. Propionibacterium spp. strains strongly inhibited growth of the Escherichia coli ATCC 11229 and Shigella sonnei Mu:57 strains (91%). All propionibacteria strains were sensitive to a majority of the antibiotics used in the investigations. Overall, dairy propionibacteria showed high antibacterial activity, resistance to pH 4.0, 5.0, high resistance to bile salts and will provide an alternative source to Lactobacillus and Bifidobacterium as probiotic culture.  相似文献   

17.
Abstract The effect on growth of a conjugated bile salt (sodium taurocholate) at physiological concentration was determined using cultures of Lactobacillus strains of murine origin. The bile salt stimulated the growth of one strain, did not affect the growth of another, but inhibited the growth of strains that produced relatively large amounts of the enzyme bile salt hydrolase. Comparison of the growth of isogenic strains that differed in the ability to produce bile salt hydrolase demonstrated that inhibition of growth was due to the accumulation of cholic acid in the culture medium as a result of the enzyme activity. Received: 15 January 1996; Revised: 26 March 1996; Accepted: 29 March 1996  相似文献   

18.
We have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving [14C]taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in medium free of bile salts. In cell-free extracts, however, the activity was about equal, 1.41 and 1.53 mumol/min per mg of protein, respectively, whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Both had similar substrate specificities, highest on taurodeoxycholic and glycocholic acid, and pH optima between 3.8 and 4.5. The kinetic properties were also similar, with Vmaxs of 17 and 53 micromoles/min per mg of protein and Kms of 0.76 and 0.95 mM taurocholic acid for A and B, respectively. Therefore, whether the enzyme exists in two forms in the cells remains to be determined.  相似文献   

19.
To study the mechanism of the propsed assimilation of cholesterol, we cultured various strains of Lactobacillus acidophilus and a Bifidobacterium sp. in the presence of cholesterol and oxgall. During culturing, both cholesterol and bile salts were precipitated. Because of bacterial bile salt deconjugation, no conjugated bile salts were observed in either the culture fluids or the pellets. During incubation, the cell count and optical density decreased. The degree of precipitation of bile salts and of cholesterol was dependent on the culture conditions. If L. acidophilus RP32 was cultured under acidifying conditions, the degree of precipitation of deconjugated bile salts was higher than if the pH was maintained at 6.0. Under acidifying conditions, cholesterol was coprecipitated with the bile salts, whereas in pH-controlled cultures, no coprecipitation of cholesterol was observed. From control experiments with different mixtures of bile salts, it appeared that coprecipitation of cholesterol during culturing was a result of formation of deconjugated bile salts, which have a decreased solubility at pH values lower than 6.0. It is concluded that the removal of cholesterol from the culture medium by L. acidophilus RP32 and other species is not due to bacterial uptake of cholesterol, but results from bacterial bile salt-deconjugating activity.  相似文献   

20.
This study aimed to compare phenotypic and genetic characteristics of Lactobacillus rhamnosus strains isolated at the end of the ripening of Parmigiano Reggiano cheese and to investigate an important prerequisite of probiotic interest, such as the capability to survive at low pH and in presence of bile salts. The use of API 50 CH, RAPD-PCR analysis and species-specific PCR allowed to ascertain the identity of 63 L. rhamnosus strains. Three L. rhamnosus strains isolated from Parmigiano Reggiano cheese, L. rhamnosus ATCC 7469T and the commercial strain L. GG were assayed to estimate the resistance to various stress factors reproducing in vitro some conditions of the gastro-intestinal environment such as low pH and different amounts of bile salts and acids. The behaviour of almost all the tested strains isolated from Parmigiano Reggiano cheese resulted analogous to that showed by L. GG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号