首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electron-spin relaxation rates of the two species of cytochrome a3(3+)-azide found in the azide compound of bovine-heart cytochrome oxidase were measured by progressive microwave saturation at T = 10 K. It has been shown previously that Cyt a3(3+)-azide gives rise to two distinct EPR resonances, depending upon the oxidation state of Cyt a. When Cyt a is ferrous, Cyt a3(3+)-azide has g = 2.88, 2.19 and 1.64; upon oxidation of Cyt a, the a3(3+)-azide g-values become g = 2.77, 2.18, and 1.74 (Goodman, G. (1984) J Biol. Chem. 259, 15094-15099). The relaxation effect of Cyt a on Cyt a3 could be measured as the difference in microwave field saturation parameter H1/2 between the g = 2.77 and g = 2.88 species. For each signal the spin-lattice relaxation time T1 was determined from H1/2 using the transverse relaxation time T2. The value of T2 at 10 K was extrapolated from a plot of line-width vs. temperature at higher temperature. The dipolar contribution to T1 was related to the Cyt a-Cyt a3 spin-spin distance utilizing available information on the relative orientation of Cyt a3-azide and Cyt a (Erecińska, M., Wilson, D.F. and Blasie, J.K. (1979) Biochim. Biophys. Acta 545, 352-364). By taking into account the relaxation parameters for both gx and gz components of the Cyt a3-azide g-tensor, the angle between the gz components of the Cyt a and Cyt a3 g-tensors was determined to be between 0 and 18 degrees, and the Cyt a-Cyt a3 spin-spin distance was found to be 19 +/- 8 A.  相似文献   

2.
We have recently developed x-ray diffraction methods to derive the profile structure of ultrathin lipid multilayer films having one to five bilayers (e.g., Skita, V., W. Richardson, M. Filipkowski, A.F. Garito, and J.K. Blasie. 1987. J. Physique. 47:1849-1855). Furthermore, we have employed these techniques to determine the location of a monolayer of cytochrome c bound to the carboxyl group surface of various ultrathin lipid multilayer substrates via nonresonance x-ray diffraction (Pachence, J.M., and J.K. Blasie. 1987. Biophys. J. 52:735-747). Here an intense tunable source of x-rays (beam line X9-A at the National Synchrotron Light Source at the Brookhaven National Laboratory) was utilized to measure the resonance x-ray diffraction effect from the heme-Fe atoms within the cytochrome c molecular monolayer located on the carboxyl surface of a five monolayer arachidic acid film. Lamellar x-ray diffraction was recorded for energies above, below, and at the Fe K-absorption edge (E = 7,112 eV). An analysis of the resonance x-ray diffraction effect is presented, whereby the location of the heme-Fe atoms within the electron density profile of the cytochrome c/arachidic acid ultrathin multilayer film is indicated to +/- 3 A accuracy.  相似文献   

3.
This work shows the feasibility of using pulsed, saturation recovery EPR to study directly the magnetic relaxation properties of metal centers in cytochrome c oxidase in the 1.5-20 K range. Heme a and CuA both showed remarkably similar Tn temperature dependences in their spin-lattice relaxation rates. Either both are in environments with very similar protein backbone configurations (Stapleton, H.J., J.P. Allen, C.P. Flynn, D.G. Stinson, and S.R. Kurtz, 1980, Phys. Rev. Lett., 45:1456-1459; Allen, J.P., J.T. Colvin, D.G. Stinson, C.P. Flynn, and H.J. Stapleton, 1982, Biophys. J., 38:299-310), or the CuA is relaxed by nearby heme a. Spin-lattice relaxation of the nitrosylferrocytochrome a3 center in mixed valence oxidase showed enhancement of relaxation by a nearby paramagnetic center, most likely heme a.  相似文献   

4.
In the preceding paper (Stamatoff, J., Eisenberger, P., Blasie, J.K., Pachence, J.M., Tavormina, A., Erecinska, M., Dutton P.L. and Brown, G. (1982) Biochim. Biophys. Acta 679, 177-187), we described the observation of resonance X-ray scattering effects from intrinsic metal atoms associated with redox centers in membrane proteins on the lamellar X-ray diffraction from oriented multilayers of reconstituted membranes. In this paper, we discuss the possible methods of analysis of such data and present the results of our model refinement analysis concerning (a) the location of the cytochrome c heme iron atom in the profile structure of a reconstituted membrane containing a photosynthetic reaction center-cytochrome c complex and (b) the location of the heme a and a3 iron atoms in the profile structure of a reconstituted membrane containing cytochrome oxidase. The former results are of special importance because they provide a test of the validity of the resonance diffraction data and the methods of analysis, since the location of cytochrome c in the reaction center-cytochrome c membrane profile is known independently of the resonance diffraction experiments.  相似文献   

5.
Native x-ray diffraction data from single crystals of inactive aconitase from pig heart (Mr 80,000) have been collected on oscillation films to 2.7 A. Analysis shows that significant measurements of the anomalous scattering signal from the Fe-S cluster in the enzyme are available in the film data. The 5.0-A resolution anomalous difference Patterson function contains vectors for one Fe-S cluster (one aconitase molecule) per asymmetric unit in space group P2(1)2(1)2 with a = 173.6, b = 72.0, and c = 72.7 A. At 2.7-A resolution, the vector map is best interpreted by three Fe sites separated from each other by less than 3 A. The single-crystal diffraction data thus confirm the presence of a 3Fe center in the inactive form of aconitase. Furthermore, the data provide crystallographic evidence that 3Fe clusters exhibit structural heterogeneity. The Fe-Fe vectors cannot be interpreted in terms of 4-A distances as observed for the [3Fe-3S] cluster in Azotobacter ferrodoxin (Ghosh, D., O'Donnell, S., Furey, W., Robbins, A. H., and Stout, C. D. (1982) J. Mol. Biol. 158, 73-109). The results are therefore in agreement with a [3Fe-4S] cluster having 2.7-A Fe-Fe distances (Beinert, H., Emptage, M. H., Dreyer, J.-L., Scott, R. A., Hahn, J. E., Hodgson, K. O., and Thomson, A. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 393-396). However, the data do not unambiguously discriminate between this model and other 3Fe clusters having short Fe-Fe distances.  相似文献   

6.
We previously showed [Herbette, L. G., Blasie, J. K., DeFoor, P., Fleischer, S., Bick, R. J., Van Winkle, W. B., Tate, C. A., & Entman, M. L. (1984) Arch. Biochem. Biophys. 234, 235-242; Herbette, L. G., DeFoor, P., Fleischer, S., Pascolini, D., Scarpa, A., & Blasie, J. K. (1985) Biochim. Biophys. Acta 817, 103-122] that the phospholipid head-group distribution in the membrane bilayer of isolated sarcoplasmic reticulum is asymmetric. From these studies, both the total number of phospholipid head groups and the total lipid, as well as the head-group species for these lipids, were found to be different for each monolayer of the membrane bilayer. In this paper, we demonstrate for the first time that there is significant asymmetry in the distribution of unsaturated fatty acids between the two monolayers; i.e., the outer monolayer of the sarcoplasmic reticulum contained more unsaturated and polyunsaturated chains when compared to the inner monolayer. X-ray diffraction measurements demonstrated that the time-averaged fatty acyl chain extension for the outer monolayer was approximately 20% less than for the inner monolayer. This is consistent with the concept that the greater degree of unsaturation in the outer monolayer may provide for a decreased average fatty acyl chain extension for that layer. This architecture for the bilayer may be related to both the "resting" state mass distribution of the calcium pump protein within the membrane bilayer and possible "conformational" states of the calcium pump protein during calcium transport by the sarcoplasmic reticulum.  相似文献   

7.
Gay Goodman  John S. Leigh  Jr. 《BBA》1987,890(3):360-367
The electron-spin relaxation rates of the two species of cytochrome a3+3-azide found in the azide compound of bovine-heart cytochrome oxidase were measured by progressive microwave saturation at T = 10 K. It has been shown previously that Cyt a+33-azide gives rise to two distinct EPR resonances, depending upon the oxidation state of Cyt a. When Cyt a is ferrous, Cyt a3+3-azide has g = 2.88, 2.19 and 1.64; upon oxidation of Cyt a, the a3+3-azide g-values become g = 2.77, 2.18, and 1.74 (Goodman, G. (1984) J. Biol. Chem. 259, 15094–15099). The relaxation effect of Cyt a on Cyt a3 could be measured as the difference in microwave field saturation parameter H1/2 between the g = 2.77 and g = 2.88 species. For each signal the spin-lattice relaxation time T1 was determined from H1/2 using the transverse relaxation time T2. The value of T2 at 10 K was extrapolated from a plot of line-width vs. temperature at higher temperature. The dipolar contribution to T1 was related to the Cyt a-Cyt a3 spin-spin distance utilizing available information on the relative orientation of Cyt a3-azide and Cyt a (Erecinska, M., Wilson, D.F. and Blasie, J.K. (1979) Biochim. Biophys. Acta 545, 352–364). By taking into account the relaxation parameters for both gx and gz components of the Cyt a3-azide g-tensor, the angle between the gz components of the Cyt a and Cyt a3g-tensors was determined to be between 0 and 18°, and the Cyt a-Cyt a3 spin-spin distance was found to be 19 ± 8 Å.  相似文献   

8.
The C-O stretching frequencies of fully reduced carbonmonoxy cytochrome ba3, a newly discovered terminal oxidase of the bacterium Thermus thermophilus (Zimmermann, B.H., Nitsche, C.I., Fee, J.A., Rusnak, F., and Münck, E. (1988) Proc. Natl. Acad. Sci. U.S. A. 85, 5779-5783), are studied by Fourier transform infrared spectroscopy. Multiple C-O frequencies are observed in the Fourier transform infrared spectra, indicating the presence of discrete interconverting conformers of the enzyme. Upon photolysis, the CO is shown to migrate exclusively to CuB+. Above 200 K, the CO returns to the heme a3 by a thermal process which follows simple first-order kinetics. The rate of the reaction was studied from 205 to 230 K and at 300 K, yielding the activation parameters delta H = 14.9 kcal/mol and delta S = -5 cal/mol/K. These are compared with previously determined activation parameters for CO recombination in mitochondrial cytochrome aa3 preparations (Fiamingo, F.G., Altschuld, R.A., Moh, P.P., and Alben, J.O. (1982) J. Biol. Chem. 257, 1639-1650). We report the novel finding that CO remains bound to CuB+ at room temperature during continuous photolysis of cytochrome ba3, and we conjecture on the possible interference of copper-bound CO in "flow-flash" and "triple-trap" studies of cytochrome c oxidases.  相似文献   

9.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47-72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

10.
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+(3)-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+(3)-NO and recombination of NO with cytochrome a2+(3) (in the 30-70 K region) revealed no differences in structure between cytochrome a2+(3) in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+(3)-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+(3)-NO. Photodissociation of cytochrome a2+(3)-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+(3) to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20-40 K region) which differ completely from those observed in cytochrome a2+(3)-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+(3)-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with delta ms = 2 EPR signals at g 4 and delta ms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

11.
The technique of distance measurement, utilizing spin relaxation enhancement by an external probe, has been extended to the study of intrinsic semiquinone radicals through the use of holmium-EDTA complexes and continuous wave electron paramagnetic resonance spectroscopy. This technique has been used to determine the distance of the semiquinone anion, Qi (also designated as Qn.- or Qc.-), from the surface of the ubiquinone cytochrome c oxidoreductase, consisting of only three subunits, in membrane particles from Rhodobacter capsulates. The location of the semiquinone anion is 6-10 A from the N side protein, establishing that there are two separate quinone reaction sites, i.e., 'Qi' and 'Qo', within this complex on opposite sides of the membrane. The results are discussed in relation to reported ENDOR, EPR, and optical studies of the mitochondrial counterpart.  相似文献   

12.
Activation of caspase-12 from procaspase-12 is specifically induced by insult to the endoplasmic reticulum (ER) (Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Nature 403, 98-103), yet the functional consequences of caspase-12 activation have been unclear. We have shown that recombinant caspase-12 specifically cleaves and activates procaspase-9 in cytosolic extracts. The activated caspase-9 catalyzes cleavage of procaspase-3, which is inhibitable by a caspase-9-specific inhibitor. Although cytochrome c released from mitochondria has been believed to be required for caspase-9 activation during apoptosis (Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Cell 90, 405-413, Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cell 91, 479-489), caspase-9 as well as caspase-12 and -3 are activated in cytochrome c-free cytosols in murine myoblast cells under ER stress. These results suggest that caspase-12 can activate caspase-9 without involvement of cytochrome c. To examine the role of caspase-12 in the activation of downstream caspases, we used a caspase-12-binding protein, which we identified in a yeast two-hybrid screen, for regulation of caspase-12 activation. The binding protein protects procaspase-12 from processing in vitro. Stable expression of the binding protein renders procaspase-12 insensitive to ER stress, thereby suppressing apoptosis and the activation of caspase-9 and -3. These data suggest that procaspase-9 is a substrate of caspase-12 and that ER stress triggers a specific cascade involving caspase-12, -9, and -3 in a cytochrome c-independent manner.  相似文献   

13.
Electron paramagnetic resonance studies of Complex II from the mitochondrial respiratory chain and soluble preparations of succinate dehydrogenase have, for the first time, identified a signal arising from a [4Fe-4S]1+ cluster, S2, in dithionite-reduced samples. Redox titrations, monitored by electron paramagnetic resonance spectroscopy demonstrate that this signal appears at the same midpoint potential as the enhancement of the spin relaxation properties of the [2Fe-2S]1+ center, S1, in both Complex II and reconstitutively active soluble enzyme. The results complement recent magnetic circular dichroism studies of succinate dehydrogenase (Johnson, M. K., Morningstar, J. E., Bennett, D. E., Ackrell, B. A. C., and Kearney, E. B. (1985) J. Biol. Chem. 260, 7368-7378) which assigned cluster S2 as a [4Fe-4S]2+,1+ center and provide evidence for spin interaction between the paramagnetic reduced forms of centers S1 and S2.  相似文献   

14.
Temperature jump relaxation kinetics of the P-450cam spin equilibrium   总被引:1,自引:0,他引:1  
M T Fisher  S G Sligar 《Biochemistry》1987,26(15):4797-4803
The ferric spin-state equilibrium and relaxation rate of cytochrome P-450 has been examined with temperature jump spectroscopy using a number of camphor analogues known to induce different mixed spin states in the substrate-bound complexes [Gould, P., Gelb, M., & Sligar, S. G. (1981) J. Biol. Chem. 256, 6686]. All temperature-induced spectral changes were monophasic, and the spin-state relaxation rate reached a limiting value at high substrate concentrations. The ferric spin equilibrium constant, Kspin, is defined in terms of the rate constants k1 and k-1 via Kspin = k1/k-1 = [P-450(HS)]/[P-450(LS)] where HS and LS represent high-spin (S = 5/2) and low-spin (S = 1/2) ferric iron, respectively, and the spectrally observed spin-state relaxation rate by kobsd = k1 + k-1. A strong correlation between the fraction of high-spin species and the rate constant, k-1, is observed. For a 3 degrees C temperature jump (from 10 to 13 degrees C), the 23% high-spin tetramethylcyclohexanone complex (Kd = 45 +/- 20 microM) is characterized by a ferric spin relaxation rate of kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and camphoroquinone (75% high spin, Kd = 15 +/- 5 microM) complexes are 1430 and 346 s-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have altered the N terminus of cytochrome f by site-directed mutagenesis of the chloroplast petA gene in Chlamydomonas reinhardtii. We have replaced the tyrosine residue, Tyr(32), located immediately downstream of the processing site Ala(29)-Gln(30)-Ala(31) by a proline. Tyr(32) is the N terminus of the mature protein and serves as the sixth axial ligand to the heme iron. This mutant, F32P, accumulated different forms of holocytochrome f and assembled them into the cytochrome b(6)f complex. The strain was able to grow phototrophically. Our results therefore contradict a previous report (Zhou, J., Fernandez-Velasco, J. G., and Malkin, R. (1996) J. Biol. Chem. 271, 1-8) that a mutation, considered to be identical to the mutation described here, prevented cytochrome b(6)f assembly. A comparative functional characterization of F32P with F29L-31L, a site-directed processing mutant in which we had replaced the processing site by a Leu(29)-Gln(30)-Leu(31) sequence (2), revealed that both mutants accumulate high spin cytochrome f, with an unusual orientation of the heme and low spin cytochrome f with an alpha-band peak at 552 nm. Both hemes have significantly lower redox potentials than wild type cytochrome f. We attribute the high spin form to uncleaved pre-holocytochrome f and the low spin form to misprocessed forms of cytochrome f that were cleaved at a position different from the regular Ala(29)-Gln-Ala(31) motif. In contrast to F29L-31L, F32P displayed a small population of functional cytochrome f, presumably cleaved at Ala(29), with characteristics close to those of wild type cytochrome f. The latter form would account for cytochrome b(6)f turnover and photosynthetic electron transfer that sustain phototrophic growth of F32P.  相似文献   

16.
We have examined the spatial organization of the redox active centers in the Site II segment of the bovine heart respiratory chain by using reconstituted proteoliposomes of ubiquinol-cytochrome c oxidoreductase (Complex III or cytochrome bc1 complex) and EPR techniques. 1) Mutual spin-spin interactions between intrinsic redox active centers were detected. The spin relaxation of the Rieske iron-sulfur cluster was enhanced by the paramagnetic cytochrome c1 and b566 hemes but not by cytochrome b562. 2) Relative distances of the individual redox active centers to the P-side and N-side surfaces of the reconstituted Complex III proteoliposome were measured by our paramagnetic probe method (Blum, H., Bowyer, J. R., Cusanovich, M. A., Waring, A. J., and Ohnishi, T. (1983) Biochim. Biophys. Acta 748, 418-428). The cytochrome b562 heme was shown to be close to the middle of the phospholipid bilayer, while the Rieske iron-sulfur cluster and cytochrome b566 heme were assigned to be near the P-side surface level of the membrane. This probe method is a low resolution technique from the structural viewpoint; however, it can provide direct and reliable assignment of the topographical locations of redox active centers within the membrane. This is the first direct demonstration of the transmembranous location of the two cytochrome b hemes, although electron transfer between these two hemes crosses only half of the membrane thickness. Our data support the assignment of transmembranous distribution of the redox active centers based on electrochromic measurements (Robertson, D.E., and Dutton, P.L. (1988) Biochim, Biophys. Acta 935, 273-291). The implication of these results on the mechanism of Site II energy coupling is discussed.  相似文献   

17.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

18.
The release of cytochrome c from mitochondria is a crucial step in apoptosis, resulting in the activation of the caspase proteases. A further consequence of cytochrome c release is the enhanced mitochondrial production of superoxide radicals (O2.), which are converted to hydrogen peroxide by manganese-superoxide dismutase. Recently, we showed that cytochrome c is a potent catalyst of 2',7'-dichlorofluorescin oxidation to the fluorescent 2',7'-dichlorofluorescein by these species, leading to the conclusion that 2',7'-dichlorofluorescein fluorescence is a reflection of cytosolic cytochrome c concentration rather than "reactive oxygen species" levels (Burkitt, M. J., and Wardman, P. (2001) Biochem. Biophys. Res. Commun. 282, 329-333). The oxidant generated from cytochrome c has so far not been identified. Several authors have suggested that the hydroxyl radical (*OH) is generated, but others have discussed the possibility of a peroxidase compound I. By examining the effects of various antioxidants (glutathione, ascorbate, and NADH) and "hydroxyl radical scavengers" (ethanol and mannitol) on the rate of 2',7'-dichlorofluorescin oxidation by cytochrome c, together with complementary EPR spin-trapping studies, we demonstrate that the hydroxyl radical is not generated. Instead, our findings suggest the formation of a peroxidase compound I-type intermediate, in which one oxidizing equivalent is present as an oxoferryl heme species and the other as the protein tyrosyl radical previously identified (Barr, D. P., Gunther, M. R., Deterding, L. J., Tomer, K. B., and Mason, R. P. (1996) J. Biol. Chem. 271, 15498-15503). Competition studies involving spin traps indicated that the oxoferryl heme component is the active oxidant. These findings provide an improved understanding of the physicochemical basis of the redox changes that occur during apoptosis.  相似文献   

19.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

20.
The heme of cytochrome P460 of Nitrosomonas europaea, which is covalently crosslinked to two cysteines of the polypeptide as with all c-type cytochromes, has an additional novel covalent crosslink to lysine 70 of the polypeptide [Arciero, D.M. & Hooper, A.B. (1997) FEBS Lett.410, 457-460]. The protein can catalyze the oxidation of hydroxylamine. The gene for this protein, cyp, was expressed in Pseudomonas aeruginosa strain PAO lacI, resulting in formation of a holo-cytochrome P460 which closely resembled native cytochrome P460 purified from N. europaea in its UV-visible spectroscopic, ligand binding and catalytic properties. Mutant versions of cytochrome P460 of N. europaea in which Lys70 70 was replaced by Arg, Ala, or Tyr, retained ligand-binding ability but lost catalytic ability and differed in optical spectra which, instead, closely resembled those of cytochromes c'. Tryptic fragments containing the c-heme joined only by two thioether linkages were observed by MALDI-TOF for the mutant cytochromes P460 K70R and K70A but not in wild-type cytochrome P460, consistent with the structural modification of the c-heme only in the wild-type cytochrome. The present observations support the hypothesized evolutionary relationship between cytochromes P460 and cytochromes c' in N. europaea and M. capsulatus[Bergmann, D.J., Zahn, J.A., & DiSpirito, A.A. (2000) Arch. Microbiol. 173, 29-34], confirm the importance of a heme-crosslink to the spectroscopic properties and catalysis and suggest that the crosslink might form auto-catalytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号