首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated concerted evolution of rRNA genes in multiple populations of Tragopogon mirus and T. miscellus, two allotetraploids that formed recurrently within the last 80 years following the introduction of three diploids (T. dubius, T. pratensis, and T. porrifolius) from Europe to North America. Using the earliest herbarium specimens of the allotetraploids (1949 and 1953) to represent the genomic condition near the time of polyploidization, we found that the parental rDNA repeats were inherited in roughly equal numbers. In contrast, in most present-day populations of both tetraploids, the rDNA of T. dubius origin is reduced and may occupy as little as 5% of total rDNA in some individuals. However, in two populations of T. mirus the repeats of T. dubius origin outnumber the repeats of the second diploid parent (T. porrifolius), indicating bidirectional concerted evolution within a single species. In plants of T. miscellus having a low rDNA contribution from T. dubius, the rDNA of T. dubius was nonetheless expressed. We have apparently caught homogenization of rDNA repeats (concerted evolution) in the act, although it has not proceeded to completion in any allopolyploid population yet examined.  相似文献   

2.
3.
In plants, polyploidy has been a significant evolutionary force on both recent and ancient time scales. In 1950, Ownbey reported two newly formed Tragopogon allopolyploids in the northwestern United States. We have made the first synthetic lines of T. mirus and T. miscellus using T. dubius, T. porrifolius, and T. pratensis as parents and colchicine treatment of F(1) hybrids. We also produced allotetraploids between T. porrifolius and T. pratensis, which are not known from nature. We report on the crossability between the diploids, as well as the inflorescence morphology, pollen size, meiotic behavior, and fertility of the synthetic polyploids. Morphologically, the synthetics resemble the natural polyploids with short- and long-liguled forms of T. miscellus resulting when T. pratensis and T. dubius are reciprocally crossed. Synthetic T. mirus was also formed reciprocally, but without any obvious morphological differences resulting from the direction of the cross. Of the 27 original crosses that yielded 171 hybrid individuals, 18 of these lineages have persisted to produce 386 S(1) progeny; each of these lineages has produced S(2) seed that are viable. The successful generation of these synthetic polyploids offers the opportunity for detailed comparative studies of natural and synthetic polyploids within a nonmodel system.  相似文献   

4.
5.
Two of the classic examples of recent allopolyploid speciation are Tragopogon mirus and T. miscellus. Previous studies have documented that both allotetraploids originated within the past 50–60 years; the diploid parents of T. minis are T. dubius and T. porrifolius; those of T. miscellus are T. dubius and T. pratensis. It has now been 40 years since these allotetraploids were first described by Ownbey in 1950. To assess whether population size (the absolute number of plants) and population number of these species have changed during the past 40 years, we determined their distribution and numbers in the Palouse region of eastern Washington and northern Idaho in the spring of 1990. We visited 90 localities, 60 in Washington and 30 in Idaho. Tragopogon minis is found in nine locations, with eight of these sites located in eastern Whitman County, Washington. Tragopogon miscellus is much more widespread, occurring in 38 of 90 locations. The latter species is now one of the most common weeds in the vicinity of Spokane, Washington. Comparison of the current distributions of these species with historical records indicates that both allotetraploids, especially T. miscellus, have increased substantially in both geographic range and numbers. These Tragopogon species offer an excellent model system for testing questions concerning the ecology and population biology of recently derived allotetraploid species and their diploid progenitors.  相似文献   

6.
J Koh  S Chen  N Zhu  F Yu  PS Soltis  DE Soltis 《The New phytologist》2012,196(1):292-305
? We examined the proteomes of the recently formed natural allopolyploid Tragopogon mirus and its diploid parents (T.?dubius, T.?porrifolius), as well as a diploid F(1) hybrid and synthetic T.?mirus. ? Analyses using iTRAQ LC-MS/MS technology identified 476 proteins produced by all three species. Of these, 408 proteins showed quantitative additivity of the two parental profiles in T.?mirus (both natural and synthetic); 68 proteins were quantitatively differentially expressed. ? Comparison of F(1) hybrid, and synthetic and natural polyploid T.?mirus with the parental diploid species revealed 32 protein expression changes associated with hybridization, 22 with genome doubling and 14 that had occurred since the origin of T.?mirus c. 80?yr ago. We found six proteins with novel expression; this phenomenon appears to start in the F(1) hybrid and results from post-translational modifications. ? Our results indicate that the impact of hybridization on the proteome is more important than is polyploidization. Furthermore, two cases of homeolog-specific expression in T.?mirus suggest that silencing in T.?mirus was not associated with hybridization itself, but occurred subsequent to both hybridization and polyploidization. This study has shown the utility of proteomics in the analysis of the evolutionary consequences of polyploidy.  相似文献   

7.
8.
Tragopogon mirus and T. miscellus are classic examples of recent allopolyploid speciation. Previous studies documented that the diploid parents of T. mirus are T. dubius and T. porrifolius and those of T. miscellus are T. dubius and T. pratensis. Restriction fragment analysis of chloroplast DNA (cpDNA) provided additional evolutionary information regarding the origin of the allotetraploids. We analyzed 39 populations of the three diploid and two allotetraploid species with 18 restriction endonucleases. Six restriction site mutations and three length mutations were identified; these unambiguously differentiated the parental diploids. Previous morphological, cytological, and electrophoretic analyses indicated that T. mirus arose independently at least three times. Chloroplast DNA data suggest that T. porrifolius has consistently been the maternal parent of T. mirus. Chloroplast DNA data also document a minimum of two independent origins of T. miscellus: 1) populations from Pullman, Washington, have T. dubius as the maternal parent; 2) all other populations have T. pratensis as the maternal parent. Two restriction site mutations implicate certain populations of T. dubius in the formation of the Pullman populations of T. miscellus. The two rare diploid species, T. porrifolius and T. pratensis, typically appear as maternal parents of the allotetraploids; the widespread and common T. dubius is the maternal parent only for two populations of T. miscellus. These data suggest that pollen load may be an important factor in determining the male and female parents of allopolyploid angiosperms.  相似文献   

9.
Genetic diversity in the introduced diploids Tragopogon dubius, T. porrifolius, and T. pratensis and their neoallotetraploid derivatives T. mirus and T. miscellus was estimated to assess the numbers of recurrent, independent origins of the two tetraploid species in the Palouse region of eastern Washington and adjacent Idaho. These tetraploid species arose in this region, probably within the past 50–60 yr, and provide one of the best models for the study of polyploidy in plants. The parental species of both T. mirus and T. miscellus have been well documented, and each tetraploid species has apparently formed multiple times. However, a recent survey of the distributions of these allotetraploids revealed that both tetraploid species have expanded their ranges considerably during the past 50 yr, and several new populations of each species were discovered. Therefore, to evaluate the possibility that these recently discovered populations are of recent independent origin, a broad analysis of genetic diversity in T. mirus, T. miscellus, and their diploid progenitors was conducted. Analyses of allozymic and DNA restriction site variation in all known populations of T. mirus and T. miscellus in the Palouse and several populations of each parental diploid species revealed several distinct genotypes in each tetraploid species. Four isozymic multilocus genotypes were observed in T. mirus, and seven were detected in T. miscellus. Tragopogon mirus possesses a single chloroplast genome, that of T. porrifolius, and two distinct repeat types of the 18S-26S ribosomal RNA genes. Populations of T. miscellus from Pullman, Washington, have the chloroplast genome of T. dubius; all other populations of T. miscellus have the chloroplast DNA of T. pratensis. All populations of T. miscellus combine the ribosomal RNA repeat types of T. dubius and T. pratensis, as demonstrated previously. When all current and previously published data are considered, both T. mirus and T. miscellus appear to have formed numerous times even within the small geographic confines of the Palouse, with estimates of five to nine and two to 21 independent origins, respectively. Such recurrent polyploidization appears to characterize most polyploid plant species investigated to date (although this number is small) and may contribute to the genetic diversity and ultimate success of polyploid species.  相似文献   

10.
?Premise of the study: Hybridization and polyploidization (allopolyploidy) are ubiquitous in the evolution of plants, but tracing the origins and subsequent evolution of the constituent genomes of allopolyploids has been challenging. Genome doubling greatly complicates genetic analyses, and this has long hindered investigation in that most allopolyploid species are "nonmodel" organisms. However, recent advances in sequencing and genomics technologies now provide unprecedented opportunities to analyze numerous genetic markers in multiple individuals in any organism. ?Methods: Here we review the application of next-generation sequencing technologies to the study of three aspects of allopolyploid genome evolution: duplicated gene loss and expression in two recently formed Tragopogon allopolyploids, intergenomic interactions and chromosomal evolution in Tragopogon miscellus, and repetitive DNA evolution in Nicotiana allopolyploids. ?Key results: For the first time, we can explore on a genomic scale the evolutionary processes that are ongoing in natural allopolyploids and not be restricted to well-studied crops and genetic models. ?Conclusions: These approaches can be easily and inexpensively applied to many other plant species-making any evolutionarily provocative system a new "model" system.  相似文献   

11.
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.  相似文献   

12.

Background  

Tragopogon mirus and T. miscellus are allotetraploids (2n = 24) that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA) following the introduction of the diploids T. dubius, T. porrifolius, and T. pratensis (2n = 12) from Europe. In most natural populations of T. mirus and T. miscellus, there are far fewer 35S rRNA genes (rDNA) of T. dubius than there are of the other diploid parent (T. porrifolius or T. pratensis). We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids.  相似文献   

13.
Tragopogon mirus Ownbey and T. miscellus Ownbey are allopolyploids that formed repeatedly during the past 80 years following the introduction of three diploids (T. dubius Scop., T. pratensis L. and T. porrifolius L.) from Europe to western North America. These polyploid species of known parentage are useful for studying the consequences of recent and recurrent polyploidization. We summarize recent analyses of the cytogenetic, genomic and genetic consequences of polyploidy in Tragopogon. Analyses of rDNA ITS (internal transcribed spacer) + ETS (external transcribed spacer) sequence data indicate that the parental diploids are phylogenetically well separated within Tragopogon (a genus of perhaps 150 species), in agreement with isozymic and cpDNA data. Using Southern blot and cloning experiments on tissue from early herbarium collections of T. mirus and T. miscellus (from 1949) to represent the rDNA repeat condition closer to the time of polyploidization than samples collected today, we have demonstrated concerted evolution of rDNA. Concerted evolution is ongoing, but has not proceeded to completion in any polyploid population examined; rDNA repeats of the diploid T. dubius are typically lost or converted in both allopolyploids, including populations of independent origin. Molecular cytogenetic studies employing rDNA probes, as well as centromeric and subtelomeric repeats isolated from Tragopogon, distinguished all chromosomes among the diploid progenitors (2n = 12). The diploid chromosome complements are additive in both allopolyploids (2n = 24); there is no evidence of major chromosomal rearrangements in populations of either T. mirus or T. miscellus. cDNA‐AFLP display revealed differences in gene expression between T. miscellus and its diploid parents, as well as between populations of T. miscellus of reciprocal origin. Approximately 5% of the genes examined in the allopolyploid populations have been silenced, and an additional 4% exhibit novel gene expression relative to their diploid parents. Some of the differences in gene expression represent maternal or paternal effects. Multiple origins of a polyploid species not only affect patterns of genetic variation in natural populations, but also contribute to differential patterns of gene expression and may therefore play a major role in the long‐term evolution of polyploids. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 485–501.  相似文献   

14.
The genomic constitution of Aegilops cylindrica Host (2n = 4x = 28, DcDcCcCc) was analyzed by C-banding, genomic in situ hybridization (GISH), and fluorescence in situ hybridization (FISH) using the DNA clones pSc119, pAs1, pTa71, and pTA794. The C-banding patterns of the Dc- and Cc-genome chromosomes of Ae. cylindrica are similar to those of D-and C-genome chromosomes of the diploid progenitor species Ae. tauschii Coss. and Ae. caudata L., respectively. These similarities permitted the genome allocation and identification of the homoeologous relationships of the Ae. cylindrica chromosomes. FISH analysis detected one major 18S-5.8S-25S rDNA locus in the short arm of chromosome 1Cc. Minor 18S-5.8S-25S rDNA loci were mapped in the short arms of 5Dc and 5Cc. 5S rDNA loci were identified in the short arm of chromosomes 1Cc, 5Dc, 5Cc, and 1Dc. GISH analysis detected intergenomic translocation in three of the five Ae. cylindrica accessions. The breakpoints in all translocations were non-centromeric with similar-sized segment exchanges.  相似文献   

15.
16.
Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its original range in comparison with soil from the expansion range. Tragopogon dubius is currently expanding from southern into north-western Europe and we examined how this plant species responds to soil communities from its original and expansion ranges. We compared the performance of T. dubius with that of the closely related Tragopogon pratensis , which has a natural occurrence along the entire latitudinal gradient. Inoculation with the rhizosphere soil from T. dubius populations of the original range had a more negative effect on plant biomass production than inoculation with rhizosphere soil from the expansion range. Interestingly, the nonrange expander T. pratensis experienced a net negative soil effect throughout this entire range. The effects observed in this species pair may be due to release from soil born enemies or accumulation of beneficial soil born organisms. If this phenomenon applies broadly to other species, then range expansion may enable plants species to show enhanced performance.  相似文献   

17.
The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.  相似文献   

18.
Polyploidization and chromosomal rearrangements are recognized as major forces in plant evolution. Their role is investigated in the disjunctly distributed northern hemisphere Hepatica (Ranunculaceae). Chromosome numbers, karyotype morphology, banding patterns, 5S and 35S rDNA localization in all known species were investigated and interpreted in a phylogenetic context established from nuclear internal transcribed spacer (ITS) and plastid matK sequences. All species had a chromosome base number of x = 7. The karyotype was symmetric and showed little variation among diploids with one locus each of 5S and 35S rDNA, except for interpopulational variation concerning 35S rDNA loci number and localization in H. asiatica. Tetraploids exhibited chromosomal changes, including asymmetry and/or loss of rDNA loci. Nuclear and plastid sequences resulted in incongruent topologies because of the positions of some tetraploid taxa. The diversification of Hepatica occurred not earlier than the Pliocene. Genome restructuring, especially involving 35S rDNA, within a few million yr or less characterizes evolution of both auto- and allopolyploids and of the diploid species H. asiatica, which is the presumptive ancestor of two other diploid species.  相似文献   

19.
Polyploidy, an important factor in eukaryotic evolution, is especially abundant in angiosperms, where it often acts in concert with hybridization to produce allopolyploids. The application of molecular phylogenetic techniques has identified the origins of numerous allopolyploids, but little is known on genomic and chromosomal consequences of allopolyploidization, despite their important role in conferring divergence of allopolyploids from their parental species. Here, using several plastid and nuclear sequence markers, we clarify the origin of tetra- and hexaploids in a group of American daisies, allowing characterization of genome dynamics in polyploids compared to their diploid ancestors. All polyploid species are allopolyploids. Among the four diploid gene pools, the propensity for allopolyploidization is unevenly distributed phylogenetically with a few species apparently more prone to participate, but the underlying causes remain unclear. Polyploid genomes are characterized by differential loss of ribosomal DNA loci (5S and 35S rDNA), known hotspots of chromosomal evolution, but show genome size additivity, suggesting limited changes beyond those affecting rDNA loci or the presence of processes counterbalancing genome reduction. Patterns of rDNA sequence conversion and provenance of the lost loci are highly idiosyncratic and differ even between allopolyploids of identical parentage, indicating that allopolyploids deriving from the same lower-ploid parental species can follow different evolutionary trajectories.  相似文献   

20.
Li D  Zhang X 《Annals of botany》2002,90(4):445-452
Fluorescence in situ hybridization was used in Thinopyrum ponticum, a decaploid species, and its related diploid species, to investigate the distribution of the 18S-5.8S-26S rDNA. The distribution of rDNA was similar in all three diploid species (Th. bessarabicum, Th. elongatum and Pseudoroegneria stipifolia). Two pairs of loci were observed in each somatic cell at metaphase and interphase. One pair was located near the terminal end and the other in the interstitial regions of the short arms of one pair of chromosomes. However, all of the major loci in Th. ponticum were located on the terminal end of the short arms of chromosomes, and one chromosome had only one major locus. The maximum number of major loci detected on metaphase spreads was 20, which was the sum of that of its progenitors. The interstitial loci that exist in the possible diploid genome donor species were probably 'lost' during the evolutionary process of the decaploid species. A number of minor loci were also detected on whole regions of two pairs of homologous chromosomes. These results suggested that the position of rDNA loci in the Triticeae might be changeable rather than fixed. Positional changes of 18S-5.8S-26S rDNA loci between Th. ponticum and its candidate genome donors indicate that it is almost impossible to find a genome in the polyploid species that is completely identical to that of its diploid donors. The possible evolutionary significance of the distribution of the rDNA is also discussed. Internal transcribed spacer (ITS) regions of nuclear DNA in Th. ponticum were investigated by PCR amplification and sequencing. The sequence data from five positive clones selected at random, together with restriction site analysis, indicated that the ITS repeated units are nearly homogeneous in this autoallodecapolypoid species. Combined with in situ hybridization results, the data led to the conclusion that the ITS region has experienced interlocus as well as intralocus concerted evolution. Phylogenetic analyses showed that the sequences from Th. ponticum have concerted to the E genome repeat type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号