首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

2.
Protein kinase A (PKA), a central locus for cAMP signaling in the cell, is composed of regulatory (R) and catalytic (C) subunits. The C-subunits are maintained in an inactive state by binding to the R-subunit dimer in a tetrameric holoenzyme complex (R(2)C(2)). PKA is activated by cAMP binding to the R-subunits which induces a conformational change leading to release of the active C-subunit. Enzymatic activity of the C-subunit is thus regulated by cAMP via the R-subunit, which toggles between cAMP and C-subunit bound states. The R-subunit is composed of a dimerization/docking (D/D) domain connected to two cAMP-binding domains (cAMP:A and cAMP:B). While crystal structures of the free C-subunit and cAMP-bound states of a deletion mutant of the R-subunit are known, there is no structure of the holoenzyme complex or of the cAMP-free state of the R-subunit. An important step in understanding the cAMP-dependent activation of PKA is to map the R-C interface and characterize the mutually exclusive interactions of the R-subunit with cAMP and C-subunit. Amide hydrogen/deuterium exchange mass spectrometry is a suitable method that has provided insights into the different states of the R-subunit in solution, thereby allowing mapping of the effects of cAMP and C-subunit on different regions of the R-subunit. Our study has localized interactions with the C-subunit to a small contiguous surface on the cAMP:A domain and the linker region. In addition, C-subunit binding causes increased amide hydrogen exchange within both cAMP-domains, suggesting that these regions become more flexible in the holoenzyme and are primed to bind cAMP. Furthermore, the difference in the protection patterns between RIalpha and the previously studied RIIbeta upon cAMP-binding suggests isoform-specific differences in cAMP-dependent regulation of PKA activity.  相似文献   

3.
A library of mutants of the catalytic subunit of the Saccharomyces cerevisiae cAMP-dependent protein kinase was screened in vitro for mutants defective in the recognition of the regulatory subunit. The mutations identified were mapped onto the three-dimensional structure of the mouse catalytic subunit with a peptide inhibitor. Mutations defective in the recognition of both the regulatory subunit and the peptide substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) mapped to the peptide-binding site shared by all substrates and inhibitors of the catalytic subunit and functionally define the binding site for the autoinhibitor sequence in the hinge region of the regulatory subunit. Mutants defective only in the recognition of the regulatory subunit identified residues that comprise additional binding sites for the regulatory subunit. The majority of these residues are clustered on the surface of the catalytic subunit in a region flanking the distal portion of the autoinhibitor/peptide-binding site. The simultaneous substitution of Lys233, Asp237, Lys257, and Lys261 in this region caused a 260-fold decrease in affinity for the regulatory subunit, whereas the catalytic efficiency toward Kemptide decreased by only 1.8-fold. The substitution of autophosphorylated Thr241, also in this region, and the 3 residues interacting with the phosphate also caused an unregulated phenotype.  相似文献   

4.
The type I form of cAMP-dependent protein kinase binds MgATP with a high affinity, and binding of MgATP decreases the affinity of the holoenzyme for cAMP [Hofmann et al. (1975) J. Biol. Chem. 250, 7795]. Holoenzyme was formed here with a mutant form of the bovine recombinant type I regulatory subunit where the essential arginine in site A, Arg-209, was replaced with Lys. Although this mutation does not significantly change the high-affinity binding of MgATP to the holoenzyme, it does abolish high-affinity binding of cAMP to site A. In the absence of MgATP, binding of cAMP to site B is sufficient to promote dissociation of the holoenzyme complex and activation of the catalytic subunit [Bubis et al. (1988) J. Biol. Chem. 263, 9668]. In the presence of MgATP however, holoenzyme formed with this mutant regulatory subunit is very resistant to cAMP. The Kd(cAMP) was greater than 1 microM, and the Ka(cAMP) increased 60-fold from 130 nM to 6.5 microM in the presence of MgATP. Thus, MgATP serves as a lock that selectively stabilizes the holoenzyme and inhibits activation. Both site A and site B are shielded from cAMP in the presence of MgATP. These results suggest that Arg-209 may play a role in stabilizing the MgATP.holoenzyme complex in addition to its role in binding the exocyclic oxygens of cAMP when cAMP is bound to the regulatory subunit. The catalytic subunit also reassociates rapidly with this mutant regulatory subunit, and in contrast to the wild-type regulatory subunit, holoenzyme formation does not require MgATP.  相似文献   

5.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

6.
We developed a specific antibody to the catalytic subunit (C-subunit) of cyclic AMP-dependent protein kinase and used it to localize C- subunit in cultured cells. C-subunit antigen was purified from bovine cardiac muscle and cross-linked to hemocyanin with glutaraldehyde. Immunized goat serum showed a low titer of antibody after boosting; it was enriched 100-fold by affinity chromatography on catalytic subunit- Sepharose. The antibody immunoprecipitated C-subunit from type I and type II holoenzyme and depleted enzymatic activity from solution. At 12.5 nM antigen, 1 microgram antibody immunoprecipitated 10 ng of C- subunit. Immunoprecipitation of 35S-labeled cell extracts and 125I- antibody detection on nitrocellulose paper revealed that the antibody specifically reacts with C-subunit in Chinese hamster ovary (CHO) whole cell extracts. Using indirect immunofluorescence to localize C-subunit, we found a pattern of diffuse staining in the cytoplasm of CHO cells with little or no nuclear staining. A similar distribution of the enzyme was observed in Swiss 3T3 cells, bovine endothelial tracheal cells, human lung fibroblasts and NRK cells. Treatment of CHO cells with 8-bromo-cyclic AMP produced no change in the pattern or intensity of immunofluorescence. We conclude that the majority of C-subunit is localized in cytoplasm and that in cultured fibroblasts exposure to cyclic AMP analogues causes no apparent redistribution of catalytic subunit.  相似文献   

7.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

8.
A truncated regulatory subunit of cAMP-dependent protein kinase I was constructed which contained deletions at both the carboxyl terminus and at the amino terminus. The entire carboxyl-terminal cAMP-binding domain was deleted as well as the first 92 residues up to the hinge region. This monomeric truncated protein still forms a complex with the catalytic subunit, and activation of this complex is mediated by cAMP. The affinity of this mutant holoenzyme for cAMP and its activation by cAMP are nearly identical to holoenzyme formed with a regulatory subunit having only the carboxyl-terminal deletion and very similar to native holoenzyme. The off rate for cAMP from both mutant regulatory subunits, however, is monophasic and very fast relative to the biphasic off rate seen for the native regulatory subunit. The effects of NaCl, urea, and pH on cAMP binding are also very similar for the mutant and native holoenzymes. Like the native type I holoenzyme, both mutant holoenzymes bind ATP with a high affinity. The positive cooperativity seen for MgATP binding to the native holoenzyme, however, is abolished in the double deletion mutant. The Hill coefficient for ATP binding to this mutant holoenzyme is 1.0 in contrast to 1.6 for the native holoenzyme. The Kd (cAMP) is increased by approximately 1 order of magnitude for both mutant forms of the holoenzyme in the presence of MgATP. A similar shift is seen for the native holoenzyme. Further characterization of the MgATP-binding properties of the wild-type holoenzyme indicates that a binary complex containing catalytic subunit and MgATP is required, in particular, for reassociation with the cAMP-bound regulatory subunit. This binary complex is required for rapid dissociation of the bound cAMP and is probably responsible for the observed reduction in cAMP-binding affinity for the type I holoenzyme in the presence of MgATP.  相似文献   

9.
W R Dostmann  S S Taylor 《Biochemistry》1991,30(35):8710-8716
Previous investigations revealed that under physiological conditions in the presence of MgATP the phosphorothioate analogue of cAMP, (Rp)-cAMPS, is a competitive inhibitor and antagonist for cAMP for cAMP-dependent protein kinases I and II [DeWit et al., (1984) Eur. J. Biochem. 142, 255-260]. For the type I holoenzyme, the antagonist properties of (Rp)-cAMPS are shown here to be absolutely dependent on MgATP. In the absence of MgATP, (Rp)-cAMPS serves as a weak agonist with a Ka of 7.9 microM. The high-affinity binding of MgATP imposes a barrier on cAMP-induced activation of the homoenzyme--a barrier that both cAMP and (Sp)-cAMPS, but not (Rp)-cAMPS, can overcome. In the absence of MgATP, this barrier no longer exists, and (Rp)-cAMPS functions as an agonist. The holoenzyme also was formed with mutant regulatory subunits. Replacing the essential arginine, predicted to bind the exocyclic oxygens of cAMP, in site A with lysine abolishes high-affinity binding of cAMP to site A. The holoenzyme formed with this mutant R-subunit is activated by (Rp)-cAMPS in both the presence and absence of MgATP. These results suggest that the stereospecific requirements for holoenzyme activation involve this guanidinium side chain. Mutations that eliminate the high-affinity binding of MgATP, such as the introduction of an autophosphorylation site in the autoinhibitory domain, also generate a holoenzyme that can be activated by (Rp)-cAMPS. In the case of the type II holoenzyme, (Rp)-cAMPS is an antagonist in both the presence and absence of MgATP, emphasizing distinct roles for MgATP in these two forms of cAMP-dependent protein kinase.  相似文献   

10.
The C-subunit of type II cyclic AMP-dependent protein kinase from bovine heart was labelled with the fluorophore fluorescamine (FAM). The association of the dye-labelled subunit (CFAM) with the R-subunit isolated from the same source was monitored by fluorescence polarization spectroscopy. The stoichiometry of C to R in the final complex was close to 1:1. The affinity of the two subunits could be described by a dissociation constant in the nanomolar range. Holoenzyme (formed from CFAM and R) was titrated with cyclic AMP, and the changes in fluorescence anisotropy, due to dissociation of the holoenzyme, recorded. The titration curves were analysed in terms of a model which required computer simulation. Cyclic AMP-induced dissociation proceeds via one or more ternary complexes, and all four cyclic AMP-binding sites on the R-dimer are accessible in the holoenzyme. The dissociation constants describing the release of the C-subunits from the two ternary complexes containing four cyclic AMP molecules were both approx. 9 microM. The binding of two cyclic AMP molecules to protein kinase is necessary and sufficient to cause the dissociation of both C-subunits. The state of association at 'in vivo' concentrations of protein and cyclic AMP is discussed.  相似文献   

11.
The antigenic regions of the type II regulatory subunit of cAMP-dependent kinase from bovine heart have been correlated with the previously established domain structure of the molecule. Immunoblotting with both serum and monoclonal antibodies of fragments generated by limited proteolysis or chemical cleavage of the R-subunit established that the major antigenic sites were confined to the amino-terminal portion of the polypeptide chain (residues 1-145). Radioimmunoassays using two different antisera suggested that one or more of the high affinity serum antibody recognition sites were further restricted to residues 91-145. This amino-terminal portion of the R-subunit includes the hinge region which is particularly sensitive to proteolysis, allowing the R-subunit to be cleaved readily into a COOH-terminal domain which retains the cAMP-binding sites and an NH2-terminal fragment which appears to be the major site for interaction of the R-subunits in the native dimer. Monoclonal antibodies that recognized determinants on both sides of this hinge region were characterized and their specific recognition sites localized. Accessibility of antigenic sites in the holoenzyme in contrast to free R2 was compared. Although cAMP did tend to slightly increase the affinity of the holoenzyme for one of the monoclonal antibodies, all of the antigenic sites clearly were exposed and accessible in the holoenzyme. Furthermore, despite the presumed close proximity of antigenic sites to interaction sites between the R- and C-subunits, in no case did binding of antibody to the holoenzyme promote dissociation of the complex. The fact that the monoclonal antibodies would precipitate holoenzyme as well as free R2 was used to ascertain the importance of specific amino acid residues in the interaction of the R- and C-subunits. cAMP-binding domains were isolated following limited proteolysis with chymotrypsin and thermolysin. These fragments differed by only three amino acid residues at the NH2-terminal end. U of these fragments in conjunction with immunoadsorption established that the chymotryptic fragment, which contained the Asp-Arg-Arg preceding the site of autophosphorylation, was capable of forming a stable complex with the C-subunit. In contrast, the thermolytic fragment which differed by only those three residues no longer complexed with the C-subunit, indicating that the arginine residues not only contribute to the specificity of the phosphorylation site but also are an essential component for energetically stabilizing the holoenzyme complex.  相似文献   

12.
The catalytic (C) subunit and the type II regulatory (RII) subunit of cAMP-dependent protein kinase can be cross-linked by interchain disulfide bonding. This disulfide bond can be catalyzed by cupric phenanthroline and also can be generated by a disulfide interchange using either RII-subunit or C-subunit that has been modified with either 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-4(azidophenylthio)phthalimide (APTP). When the 2 cysteine residues of the C-subunit are reacted with DTNB prior to incubation with the RII-subunit, interchain disulfide bonding occurs. Similar observations are seen with C-subunit that had been modified with APTP. Interchain disulfide bonds also form when the RII-subunit is modified with DTNB prior to incubation with the C-subunit. The presence of cAMP facilitates this cross-linking while autophosphorylation of the RII-subunit retards the rate at which the interchain disulfide bond forms. Interchain disulfide bonds also form spontaneously when the RII-subunit and the C-subunit are dialyzed at pH 8.0 in the absence of reducing agents. The specific amino acid residues that participate in intersubunit disulfide bonding have been identified as Cys-97 in the RII-subunit and Cys-199 in the C-subunit. Based on the sequence homologies of the RII-subunit with other kinase substrates and on the proximity of Cys-97 to the catalytic site, a model is proposed in which the autophosphorylation site of the RII-subunit occupies the substrate-binding site in the holoenzyme. The model also proposes that this same site may be occupied by the region flanking Cys-199 in the C-subunit when the C-subunit is dissociated.  相似文献   

13.
An expression vector has been constructed for the type I regulatory subunit of cAMP-dependent protein kinase. A cDNA clone for the bovine RI-subunit has been inserted into pUC7. When Escherichia coli JM105 was transformed with this plasmid, R-subunit was expressed in amounts that approached 4 mg/liter. The expressed protein was visualized in total cell extracts by photolabeling with 8-azidoadenosine 3':5'-mono[32P]phosphate following transfer from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose. Expression of R-subunit was independent of isopropyl-beta-D-thiogalactopyranoside. R-subunit accumulated in large amounts only in the stationary phase of growth, and the addition of isopropyl-beta-D-thiogalactopyranoside during the log phase of growth actually blocked the accumulation of R-subunit. Maximum expression (20 mg/liter) was achieved when E. coli 222 was transformed with the RI-containing plasmid. E. coli 222 is a strain that contains two mutations; it is cya- and also has a mutation in the catabolite gene activator protein (crp) that enables the protein to bind to DNA in the absence of cAMP. The expressed RI-subunit was a soluble, dimeric protein, and no significant proteolysis was apparent in the cell extract. The purified RI-subunit bound 2 mol of cAMP/mol of R monomer, reassociated with C-subunit to form holoenzyme, and migrated as a dimer on sodium dodecyl sulfate-polyacrylamide gels in the absence of reducing agents. The expressed protein was also susceptible to limited proteolysis, yielding a monomeric cAMP-binding fragment having a molecular weight of 35,000. In all of these properties, the expressed protein was indistinguishable from RI purified from bovine tissue even though the R-subunit expressed in E. coli represents a fusion protein that contains 10 additional amino acids at the amino terminus that are provided by the lac Z' gene of the vector. This NH2-terminal sequence was confirmed by amino acid sequencing.  相似文献   

14.
Oligonucleotide-directed mutagenesis was used to produce mutants in the hinge region of the regulatory subunit (R) of the Saccharomyces cerevisiae cAMP-dependent protein kinase. The mutant proteins were expressed in Escherichia coli, purified, urea treated to produce cAMP-free regulatory (R), and analyzed in vitro for catalytic (C) subunit inhibitory activity in the presence and absence of cAMP. When assayed in the absence of cAMP, wild type R dimer inhibited C with an IC50 of 40 nM. Replacement of amino acid residue Ser-145 (the autophosphorylation site of yeast R) with Ala or Gly produced mutants which were 2-10-fold better inhibitors of C, while replacement with Glu, Asp, Lys, or Thr produced mutants which were 2-5-fold worse inhibitors of C relative to wild type R. When assayed in the presence of cAMP, all R subunits had a decreased affinity for C subunit, with Ser-145 and Thr-145 undergoing autophosphorylation. These results suggest that the amino acid at position 145 of R contributes to R-C interaction and therefore influences the equilibrium of yeast protein kinase subunits in vitro.  相似文献   

15.
cAMP-dependent protein kinase (cAPK) is a key component in numerous cell signaling pathways. The cAPK regulatory (R) subunit maintains the kinase in an inactive state until cAMP saturation of the R-subunit leads to activation of the enzyme. To delineate the conformational changes associated with cAPK activation, the amide hydrogen/deuterium exchange in the cAPK type IIbeta R-subunit was probed by electrospray mass spectrometry. Three states of the R-subunit, cAMP-bound, catalytic (C)-subunit bound, and apo, were incubated in deuterated water for various lengths of time and then, prior to mass spectrometry analysis, subjected to digestion by pepsin to localize the deuterium incorporation. High sequence coverage (>99%) by the pepsin-digested fragments enables us to monitor the dynamics of the whole protein. The effects of cAMP binding on RIIbeta amide hydrogen exchange are restricted to the cAMP-binding pockets, while the effects of C-subunit binding are evident across both cAMP-binding domains and the linker region. The decreased amide hydrogen exchange for residues 253-268 within cAMP binding domain A and for residues 102-115, which include the pseudosubstrate inhibitory site, support the prediction that these two regions represent the conserved primary and peripheral C-subunit binding sites. An increase in amide hydrogen exchange for a broad area within cAMP-binding domain B and a narrow area within cAMP-binding domain A (residues 222-232) suggest that C-subunit binding transmits long-distance conformational changes throughout the protein.  相似文献   

16.
Anand G  Taylor SS  Johnson DA 《Biochemistry》2007,46(32):9283-9291
To better understand the molecular mechanism of cAMP-induced and substrate-enhanced activation of type-I A-kinase, we measured the kinetics of A-kinase regulatory subunit interactions using a stopped-flow spectrofluorometric method. Specifically, we conjugated fluorescein maleimide (FM) to two separate single cysteine-substituted and truncated mutants of the type Ialpha regulatory subunit of A-kinase, RIalpha (91-244). One site of cysteine substitution and conjugation was at R92 and the other at R239. Although the emission from both conjugates changed with catalytic subunit binding, only the FM-R92C conjugate yielded unambiguous results in the presence of cAMP and was therefore used to assess whether a pseudosubstrate perturbed the rate of holoenzyme dissociation. We found that cAMP selectively accelerates the rate of dissociation of the RIalpha (91-244):C-subunit complex approximately 700-fold, resulting in an equilibrium dissociation constant of 130 nM. Furthermore, excess amounts of the pseudosubstrate inhibitor, PKI(5-24), had no effect on the rate of RIalpha (91-244):C-subunit complex dissociation. The results indicate that the limited ability of cAMP to induce holoenzyme dissociation reflects a greatly reduced but still significant regulatory catalytic subunit affinity in the presence of cAMP. Moreover, the ability of the substrate to facilitate cAMP-induced dissociation results from the mass action effect of excess substrate and not from direct substrate binding to holoenzyme.  相似文献   

17.
Carbamoyl-phosphate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiring one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli is composed of two polypeptide chains. The smaller of these belongs to the Class I amidotransferase superfamily and contains all of the necessary amino acid side chains required for the hydrolysis of glutamine to glutamate and ammonia. Two homologous domains from the larger subunit adopt conformations that are characteristic for members of the ATP-grasp superfamily. Each of these ATP-grasp domains contains an active site responsible for binding one molecule of MgATP. High resolution x-ray crystallographic analyses have shown that, remarkably, the three active sites in the E. coli enzyme are connected by a molecular tunnel of approximately 100 A in total length. Here we describe the high resolution x-ray crystallographic structure of the G359F (small subunit) mutant protein of carbamoyl phosphate synthetase. This residue was initially targeted for study because it resides within the interior wall of the molecular tunnel leading from the active site of the small subunit to the first active site of the large subunit. It was anticipated that a mutation to the larger residue would "clog" the ammonia tunnel and impede the delivery of ammonia from its site of production to the site of utilization. In fact, the G359F substitution resulted in a complete change in the conformation of the loop delineated by Glu-355 to Ala-364, thereby providing an "escape" route for the ammonia intermediate directly to the bulk solvent. The substitution also effected the disposition of several key catalytic amino acid side chains in the small subunit active site.  相似文献   

18.
Immunochemical analysis of the cAMP-dependent protein kinase regulatory subunit type II was performed with the use of two rabbit antisera elicited to a free R-subunit from pig brain and to a RcAMP complex. Quantitative precipitation of the homogeneous antigen revealed six determinants on the R-molecule. Of these at least one is localized in the R-fragment (37 kD), the others--in the N-terminal part of the R-molecule. The antigenic determinants seem to be remoted from the cAMP-binding centers, since the attachment of the affinity purified antibody Fab-fragments to the R-subunit did not influence the cAMP-binding activity of the latter. The antibodies to RcAMP caused dissociation of the holoenzyme. The antibody Fab-fragment binding to the R-subunit prevented its association with the catalytic subunit. The results of immunochemical analysis suggest that the R-subunit adopts different conformations when bound to cAMP or to the catalytic subunit.  相似文献   

19.
The activity of a purified high molecular weight phosphoprotein phosphatase was inhibited by purified type II cAMP-dependent protein kinase. This effect required cAMP and was obtained in the absence of ATP. The isolated type II regulatory subunits (R-subunits) from several species also inhibited the phosphatase activity in both crude extracts and purified preparations. Half maximal inhibition was observed at 0.06-0.25 microM, well within the physiological range of R-subunit concentrations. The inhibitory potency of R-subunit was greater using the thiophosphorylated form. Limited trypsinization of the R-subunit abolished the inhibitory activity. The C-subunit released the bound cAMP when combined with R-subunit, but the phosphatase did not, implying that the inhibited species is a R.cAMP-phosphatase complex. The results suggest that the R-subunit might have at least one physiological role in addition to inhibition of the C-subunit, i.e., inhibition of phosphatase. The latter would occur only when cAMP is elevated.  相似文献   

20.
W Xu  E R Kantrowitz 《Biochemistry》1991,30(9):2535-2542
Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, oxygens of the phosphate of carbamoyl phosphate interact with Ser-52, Thr-53 (backbone), Arg-54, Thr-55, and Arg-105 from one catalytic chain, as well as Ser-80 and Lys-84 from an adjacent chain in the same catalytic subunit. In order to define the role of Ser-52 and Ser-80 in the catalytic mechanism, two mutant versions of the enzyme were created with Ser-52 or Ser-80 replaced by alanine. The Ser-52----Ala holoenzyme exhibits a 670-fold reduction in maximal observed specific activity, and a loss of both aspartate and carbamoyl phosphate cooperativity. This mutation also causes 23-fold and 5.6-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy indicates that saturating carbamoyl phosphate does not induce the same conformational change in the Ser-52----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Ser-52----Ala catalytic subunit are altered to a lesser extent than the mutant holoenzyme. The maximal observed specific activity is reduced by 89-fold, and the carbamoyl phosphate concentration at half the maximal observed velocity increases by 53-fold while the aspartate concentration at half the maximal observed velocity increases 6-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号