首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   

2.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in genes encoding the polycystin (PC) 1 and 2 proteins. The goal of this study was to determine the role of calcium in regulating cyst growth. Stromal interaction molecule 1 (STIM1) protein expression was 15-fold higher in PC1-null proximal tubule cells (PN) than in heterozygote (PH) controls and 2-fold higher in an inducible, PC1 knockout, mouse model of ADPKD compared to a non-cystic match control. IP3 receptor protein expression was also higher in the cystic mice. Knocking down STIM1 with siRNA reduced cyst growth and lowered cAMP levels in PN cells. Fura2 measurements of intracellular Ca2+ showed higher levels of intracellular Ca2+, SOCE and thaspigargin-stimulated ER Ca2+ release in PN vs. PH cells. There was a dramatic reduction in thapsigargin-stimulated release of ER Ca2+ following STIM1 silencing or application of 2-APB, consistent with altered ER Ca2+ movement; the protein expression of the Ca2+-dependent adenylyl cyclases (AC) AC3 and AC6 was up- and down-regulated, respectively. Like STIM1 knockdown, application of the calmodulin inhibitor W7 lowered cAMP levels, further indicating that STIM1 regulates AC3 via Ca2+ We conclude that the high levels of STIM1 in ADPKD cells play a role in supporting cyst growth and promoting high cAMP levels and an increased release of Ca2+ from the ER. Thus, our results provide novel therapeutic targets for treating ADPKD.  相似文献   

3.
Thrombin increases the cytosolic Ca2+ concentrations and induces NO production by activating proteinase‐activated receptor 1 (PAR1) in vascular endothelial cells. The store‐operated Ca2+ influx is a major Ca2+ influx pathway in non‐excitable cells including endothelial cells and it has been reported to play a role in the thrombin‐induced Ca2+ signaling in endothelial cells. Recent studies have identified stromal interaction molecule 1 (STIM1) to function as a sensor of the store site Ca2+ content, thereby regulating the store‐operated Ca2+ influx. However, the functional role of STIM1 in the thrombin‐induced Ca2+ influx and NO production in endothelial cells still remains to be elucidated. Fura‐2 and diaminorhodamine‐4M fluorometry was utilized to evaluate the thrombin‐induced changes in cytosolic Ca2+ concentrations and NO production, respectively, in porcine aortic endothelial cells transfected with small interfering RNA (siRNA) targeted to STIM1. STIM1‐targeted siRNA suppressed the STIM1 expression and the thapsigargin‐induced Ca2+ influx. The degree of suppression of the STIM1 expression correlated well to the degree of suppression of the Ca2+ influx. The knockdown of STIM1 was associated with a substantial inhibition of the Ca2+ influx and a partial reduction of the NO production induced by thrombin. The thrombin‐induced Ca2+ influx exhibited the similar sensitivity toward the Ca2+ influx inhibitors to that seen with the thapsigargin‐induced Ca2+ influx. The present study provides the first evidence that STIM1 plays a critical role in the PAR1‐mediated Ca2+ influx and Ca2+‐dependent component of the NO production in endothelial cells. J. Cell. Biochem. 108: 499–507, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production.  相似文献   

5.
Increasing evidence supports that activation of store‐operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5‐FU induces hepatocarcinoma cell death through regulating Ca2+‐dependent autophagy. [Ca2+]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5‐fluorouracil (5‐FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5‐FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5‐FU‐induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5‐FU‐activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5‐FU‐induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5‐FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5‐FU sensitivity for hepatocarcinoma treatment and blockade of Orai1‐mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5‐FU treatment.  相似文献   

6.
Drosophila has proved to be a valuable system for studying the structure and function of ion channels. However, relatively little is known about the regulation of ion channels, particularly that of Ca2+ channels, in Drosophila. Physiological and pharmacological differences between invertebrate and mammalian L‐type Ca2+ channels raise questions on the extent of conservation of Ca2+ channel modulatory pathways. We have examined the role of cyclic adenosine monophosphate (cAMP) cascade in modulating the dihydropyridine (DHP)‐sensitive Ca2+ channels in the larval muscles of Drosophila, using mutations and drugs that disrupt specific steps in this pathway. The L‐type (DHP‐sensitive) Ca2+ channel current was increased in the dunce mutants, which have high cAMP concentration owing to cAMP‐specific phosphodiesterase (PDE) disruption. The current was decreased in the rutabaga mutants, where adenylyl cyclase (AC) activity is altered thereby decreasing the cAMP concentration. The dunce effect was mimicked by 8‐Br‐cAMP, a cAMP analog, and IBMX, a PDE inhibitor. The rutabaga effect was rescued by forskolin, an AC activator. H‐89, an inhibitor of protein kinase‐A (PKA), reduced the current and inhibited the effect of 8‐Br‐cAMP. The data suggest modulation of L‐type Ca2+ channels of Drosophila via a cAMP‐PKA mediated pathway. While there are differences in L‐type channels, as well as in components of cAMP cascade, between Drosophila and vertebrates, main features of the modulatory pathway have been conserved. The data also raise questions on the likely role of DHP‐sensitive Ca2+ channel modulation in synaptic plasticity, and learning and memory, processes disrupted by the dnc and the rut mutations. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 491–500, 1999  相似文献   

7.
Differentiating H19‐7 hippocampal precursor cells up‐regulate (~4.3‐fold) store‐operated channel (SOC) activity; relatively linear current‐voltage curves indicate an ISOC subtype of SOC. In differentiated H19‐7 neurons, the majority of agonist (arginine vasopressin, AVP)‐stimulated Ca2+ entry occurs via SOCs, based on 2‐aminoethyldiphenylborinate (2‐APB) inhibition data and the observation that transient receptor potential C1 (TRPC1) channel knock down cells show a dramatic reduction of thapsigargin‐stimulated store‐operated Ca2+ entry (SOCE) and inhibition of AVP‐stimulated Ca2+ entry. Treatment of H19‐7 cells with the rat stress hormone corticosterone during differentiation induces a significant increase in AVP‐stimulated Ca2+ entry, which is virtually eliminated by 2‐APB, suggesting a corticosterone‐induced increase of SOCE. Corticosterone also enhances AVP‐stimulated Mn2+ entry, confirming an elevated Ca2+ entry pathway, rather than a decreased Ca2+ extrusion. When corticosterone addition is delayed until after H19‐7 cells have fully differentiated, it still elevates SOCE. In corticosterone‐treated H19‐7 cells, the knock down of TRPC1 no longer blocks thapsigargin‐stimulated Ca2+ entry suggesting that the subtype of SOCs expressed in H19‐7 cells is altered by corticosterone treatment. Electrophysiological studies demonstrate that store‐operated currents in corticosterone‐treated H19‐7 cells exhibit a highly inward rectifying current‐voltage curve consistent with an ICRAC subtype of SOCs. Consistent with this finding is the observation that corticosterone treatment of H19‐7 cells increases the expression of the ICRAC channel subunit Orai1. Thus, the subtype of SOCs expressed in H19‐7 hippocampal neurons can be altered from ISOC to ICRAC by chronic treatment with stress hormones. J. Cell. Physiol. 228: 1332–1343, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Endoplasmic reticulum (ER)–plasma membrane (PM) junctions form functionally active microdomains that connect intracellular and extracellular environments. While the key role of these interfaces in maintenance of intracellular Ca2+ levels has been uncovered in recent years, the functional significance of ER‐PM junctions in non‐excitable cells has remained unclear. Here, we show that the ER calcium sensor protein STIM1 (stromal interaction molecule 1) interacts with the plasma membrane‐localized adenylyl cyclase 6 (ADCY6) to govern melanogenesis. The physiological stimulus α‐melanocyte‐stimulating hormone (αMSH) depletes ER Ca2+ stores, thus recruiting STIM1 to ER‐PM junctions, which in turn activates ADCY6. Using zebrafish as a model system, we further established STIM1's significance in regulating pigmentation in vivo. STIM1 domain deletion studies reveal the importance of Ser/Pro‐rich C‐terminal region in this interaction. This mechanism of cAMP generation creates a positive feedback loop, controlling the output of the classical αMSH‐cAMP‐MITF axis in melanocytes. Our study thus delineates a signaling module that couples two fundamental secondary messengers to drive pigmentation. Given the central role of calcium and cAMP signaling pathways, this module may be operative during various other physiological processes and pathological conditions.  相似文献   

9.
《Biophysical journal》2020,118(1):70-84
STIM1 (a Ca2+ sensor in the endoplasmic reticulum (ER) membrane) and Orai1 (a pore-forming subunit of the Ca2+-release-activated calcium channel in the plasma membrane) diffuse in the ER membrane and plasma membrane, respectively. Upon depletion of Ca2+ stores in the ER, STIM1 translocates to the ER-plasma membrane junction and binds Orai1 to trigger store-operated Ca2+ entry. However, the motion of STIM1 and Orai1 during this process and its roles to Ca2+ entry is poorly understood. Here, we report real-time tracking of single STIM1 and Orai1 particles in the ER membrane and plasma membrane in living cells before and after Ca2+ store depletion. We found that the motion of single STIM1 and Orai1 particles exhibits anomalous diffusion both before and after store depletion, and their mobility—measured by the radius of gyration of the trajectories, mean-square displacement, and generalized diffusion coefficient—decreases drastically after store depletion. We also found that the measured displacement distribution is non-Gaussian, and the non-Gaussian parameter drastically increases after store depletion. Detailed analyses and simulations revealed that single STIM1 and Orai1 particles are confined in the compartmentalized membrane both before and after store depletion, and the changes in the motion after store depletion are explained by increased confinement and polydispersity of STIM1-Orai1 complexes formed at the ER-plasma membrane junctions. Further simulations showed that this increase in the confinement and polydispersity after store depletion localizes a rapid increase of Ca2+ influx, which can facilitate the rapid activation of local Ca2+ signaling pathways and the efficient replenishing of Ca2+ store in the ER in store-operated Ca2+ entry.  相似文献   

10.
The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion‐selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA‐containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T‐cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV‐specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store‐operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane‐localized calcium release activated calcium channel protein ORAI1 in response to Ca2+ store depletion. Furthermore, VacA inhibited the increase of cytosolic‐free Ca2+ in the Jurkat E6‐1 T‐cell line and human CD4+ T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.  相似文献   

11.
Depletion of intracellular Ca2+ stores evokes store‐operated Ca2+ entry through the Ca2+ release‐activated Ca2+ (CRAC) channels. In this study, we found that the store‐operated Ca2+ entry was inhibited by neomycin, an aminoglycoside that strongly binds phosphatidylinositol 4,5‐bisphosphate (PtdIns(4,5)P2). Patch clamp recordings revealed that neomycin blocked the CRAC currents reconstituted by co‐expression of Orai1 and Stim1 in HEK293 cells. Using a rapamycin‐inducible PtdIns(4,5)P2‐specific phosphatase (Inp54p) system to manipulate the PtdIns(4,5)P2 in the plasma membrane, we found that the CRAC current was not altered by PtdIns(4,5)P2 depletion. This result suggests that PtdIns(4,5)P2 is not required for CRAC channel activity, and thereby, neomycin inhibits CRAC channels in a manner that is independent of neomycin–PtdIns(4,5)P2 binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca2+-activated chloride channel (CaCC) is activated by Ca2+ agonists like UTP. We found that most chloride current elicited by Ca2+ agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca2+ activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca2+ agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca2+ agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca2+/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1–CFTR association is responsible for Ca2+/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca2+ agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.  相似文献   

13.
We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca2+ leak using synthetic Ca2+ indicators that report changes in both the cytoplasmic ([Ca2+]i) and the luminal ER ([Ca2+]ER) Ca2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca2+]ER but did not decrease the ER Ca2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP3R and only Orai3 channel supported the 2-APB-induced ER Ca2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca2+ leak but did not modify the ER Ca2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca2+]i response after TG but only when the ER store had been overloaded with Ca2+ by eliminating the acidic internal Ca2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca2+ leak but forms an ER Ca2+ leak channel that is limiting the overloading with Ca2+ of the ER store.  相似文献   

14.
Abstract. Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. Objectives: The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast‐like MG‐63 cells. Meterials and Methods: Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. Results: Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG‐63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet‐derived growth factor. Inhibitors of store‐operated Ca2+ channels (2‐APB and SKF‐96365) prevented CCE, while voltage‐dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage‐dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2‐APB and SKF‐96395, inhibited it. Cell cycle analysis showed that 2‐APB and SKF‐96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. Conclusions: Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation.  相似文献   

15.
Mutations in lamin A (LMNA) are responsible for a variety of human dystrophic and metabolic diseases. Here, we created a mouse model in which progerin, the lamin A mutant protein that causes Hutchinson–Gilford progeria syndrome (HGPS), can be inducibly overexpressed. Muscle‐specific overexpression of progerin was sufficient to induce muscular dystrophy and alter whole‐body energy expenditure, leading to premature death. Intriguingly, sarcolipin (Sln), an endoplasmic reticulum (ER)‐associated protein involved in heat production, is upregulated in progerin‐expressing and Lmna knockout (Lmna?/?) skeletal muscle. The depletion of Sln accelerated the early death of Lmna?/? mice. An examination at the molecular level revealed that progerin recruits Sln and Calnexin to the nuclear periphery. Furthermore, progerin‐expressing myoblasts presented enhanced store‐operated Ca2+ entry, as well as increased co‐localization of STIM1 and ORAI1. These findings suggest that progerin dysregulates calcium homeostasis through an interaction with a subset of ER‐associated proteins, resulting in thermogenic and metabolic abnormalities.  相似文献   

16.
Our recent study showed that bradykinin increases cell cycling progression and migration of human cardiac c‐Kit+ progenitor cells by activating pAkt and pERK1/2 signals. This study investigated whether bradykinin‐mediated Ca2+ signalling participates in regulating cellular functions in cultured human cardiac c‐Kit+ progenitor cells using laser scanning confocal microscopy and biochemical approaches. It was found that bradykinin increased cytosolic free Ca2+ () by triggering a transient Ca2+ release from ER IP3Rs followed by sustained Ca2+ influx through store‐operated Ca2+ entry (SOCE) channel. Blockade of B2 receptor with HOE140 or IP3Rs with araguspongin B or silencing IP3R3 with siRNA abolished both Ca2+ release and Ca2+ influx. It is interesting to note that the bradykinin‐induced cell cycle progression and migration were not observed in cells with siRNA‐silenced IP3R3 or the SOCE component TRPC1, Orai1 or STIM1. Also the bradykinin‐induced increase in pAkt and pERK1/2 as well as cyclin D1 was reduced in these cells. These results demonstrate for the first time that bradykinin‐mediated increase in free via ER‐IP3R3 Ca2+ release followed by Ca2+ influx through SOCE channel plays a crucial role in regulating cell growth and migration via activating pAkt, pERK1/2 and cyclin D1 in human cardiac c‐Kit+ progenitor cells.  相似文献   

17.
We studied store-dependent (activated by depletion of the endoplasmic reticulum, ER, store) entry of Ca2+ from the extracellular medium into neurons of the rat spinal ganglia (small- and medium-sized cells; diameter, 18 to 36 μm). Activation of ryanodine-sensitive receptors of the ER in the studied neurons superfused by Tyrode solutions containing Ca2+ or with no Ca2+ was provided by application of 10 mM caffeine. The decay phase of caffeine-induced calcium transients in a Ca2+-containing solution was significantly longer than that in a Ca2+-free solution. This fact allows us to suppose that such a phenomenon is determined by Ca2+ entry into the neuron from the extracellular medium activated by caffeine-induced depletion of the ER store. Substitution of Ca2+-free extracellular solution by Ca2+-containing Tyrode solution, after depletion of the ER stores induced by applications of 100 nM ryanodine, 200 μM ATP, or 1 μM thapsigargin, resulted in increases in the concentration of intracellular Ca2+. These observations allow us to postulate that store-dependent Ca2+ entry into the studied neurons is activated after depletion not only of the inositol trisphosphate-sensitive ER store but also of the ryanodine-sensitive store. This entry also occurs after blocking of ATPases of the ER by thapsigargin. The kinetic characteristics of the rising phase of store-dependent Ca2+ entry induced by depletion of the ER stores under the influence of various agents are dissimilar; this can be related to different mechanisms of activation of such signals and/or to a compartmental organization of the ER. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 277–283, May–June, 2005.  相似文献   

18.
Physiological platelet activation and thrombus formation are essential to stop bleeding in case of vascular injury, whereas inadequate triggering of the same process in diseased vessels can lead to fatal thromboembolism and tissue ischemia of vital organs. A central step in platelet activation is agonist-induced elevation of the intracellular Ca2+ concentration. This happens on the one hand through the release of Ca2+ from intracellular stores and on the other hand through Ca2+ influx from the extracellular space. In platelets, the major Ca2+ influx pathway is the so-called store operated Ca2+ entry (SOCE), induced by store depletion. Studies in the last five years discovered the molecular background of platelet SOCE. Stromal interaction molecule 1 (STIM1) and Orai1, two so far unknown molecules, got in the focus of research. STIM1 was found to be the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, whereas Orai1 was identified as the major store operated Ca2+ (SOC) channel in the plasma membrane. These two molecules and their role in platelet function and thrombus formation are the topic of the present review with a special focus on apoptosis and apoptosis-like processes in platelet physiology.  相似文献   

19.
Tetramethylpyrazine (TMP) is a compound purified from herb. Its effect on Ca2+ concentrations ([Ca2+]i) in renal cells is unclear. This study examined whether TMP altered Ca2+ signaling in Madin‐Darby canine kidney (MDCK) cells. TMP at 100–800 μM induced [Ca2+]i rises, which were reduced by Ca2+ removal. TMP induced Mn2+ influx implicating Ca2+ entry. TMP‐induced Ca2+ entry was inhibited by 30% by modulators of protein kinase C (PKC) and store‐operated Ca2+ channels. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5‐di‐tert‐butylhydroquinone (BHQ) inhibited 93% of TMP‐evoked [Ca2+]i rises. Treatment with TMP abolished BHQ‐evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) abolished TMP‐induced responses. TMP at 200–1000 μM decreased viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid‐acetoxymethyl ester. Together, in MDCK cells, TMP induced [Ca2+]i rises by evoking PLC‐dependent Ca2+ release from endoplasmic reticulum and Ca2+ entry via PKC‐sensitive store‐operated Ca2+ entry. TMP also caused Ca2+‐independent cell death.  相似文献   

20.
Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca2+ within internal calcium stores (Ca‐rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion‐selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca2+ transport was specific to midtubule segments, where 97% of the Ca2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage‐gated (L‐type) calcium channels decreased Ca2+ influx ≥fivefold in adenosine 3′,5′‐cyclic monophosphate (cAMP)‐stimulated tubules, suggesting basolateral Ca2+ influx is facilitated by voltage‐gated Ca2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca2+ had opposite effects on tubule Ca2+ transport. The adenylyl cyclase‐cAMP‐PKA pathway promotes Ca2+ sequestration whereas both 5‐hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca2+ sequestration through stimulatory (cAMP) and inhibitory (Ca2+) regulatory pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号