共查询到20条相似文献,搜索用时 0 毫秒
1.
Souza Rômulo C. Solly Emily F. Dawes Melissa A. Graf Frank Hagedorn Frank Egli Simon Clement Charles R. Nagy Laszlo Rixen Christian Peter Martina 《Plant and Soil》2017,416(1-2):527-537
Plant and Soil - Climate warming and elevated CO2 can modify nutrient cycling mediated by enzymes in soils, especially in cold-limited ecosystems with a low availability of nutrients and a high... 相似文献
2.
MELISSA MARTIN KONSTANTIN GAVAZOV CHRISTIAN KÖRNER STEPHAN HÄTTENSCHWILER CHRISTIAN RIXEN 《Global Change Biology》2010,16(3):1057-1070
The frequency of freezing events during the early growing season and the vulnerability to freezing of plants in European high‐altitude environments could increase under future atmospheric and climate change. We tested early growing season freezing sensitivity in 10 species, from four plant functional types (PFTs) spanning three plant growth forms (PGFs), from a long‐term in situ CO2 enrichment (566 vs. 370 ppm) and 2‐year soil warming (+4 K) experiment at treeline in the Swiss Alps (Stillberg, Davos). By additionally tracking plant phenology, we distinguished indirect phenology‐driven CO2 and warming effects from direct physiology‐related effects on freezing sensitivity. The freezing damage threshold (lethal temperature 50) under ambient conditions of the 10 treeline species spanned from ?6.7±0.3 °C (Larix decidua) to ?9.9±0.6 °C (Vaccinium gaultherioides). PFT, but not PGF, explained a significant amount of this interspecific variation. Long‐term exposure to elevated CO2 led to greater freezing sensitivity in multiple species but did not influence phenology, implying that physiological changes caused by CO2 enrichment were responsible for the effect. The elevated CO2 effect on freezing resistance was significant in leaves of Larix, Vaccinium myrtillus, and Gentiana punctata and marginally significant in leaves of Homogyne alpina and Avenella flexuosa. No significant CO2 effect was found in new shoots of Empetrum hermaphroditum or in leaves of Pinus uncinata, Leontodon helveticus, Melampyrum pratense, and V. gaultherioides. Soil warming led to advanced leaf expansion and reduced freezing resistance in V. myrtillus only, whereas Avenella showed greater freezing resistance when exposed to warming. No effect of soil warming was found in any of the other species. Effects of elevated CO2 and soil warming on freezing sensitivity were not consistent within PFTs or PGFs, suggesting that any future shifts in plant community composition due to increased damage from freezing events will likely occur at the individual species level. 相似文献
3.
Niklaus Pascal A. Wohlfender Monika Siegwolf Rolf Körner Christian 《Plant and Soil》2001,233(2):189-202
Stimulated plant production and often even larger stimulation of photosynthesis at elevated CO2 raise the possibility of increased C storage in plants and soils. We analysed ecosystem C partitioning and soil C fluxes in calcareous grassland exposed to elevated CO2 for 6 years. At elevated CO2, C pools increased in plants (+23%) and surface litter (+24%), but were not altered in microbes and soil organic matter. Soils were fractionated into particle size and density separates. The amount of low-density macroorganic C, an indicator of particulate soil C inputs from root litter, was not affected by elevated CO2. Incorporation of C fixed during the experiment (Cnew) was tracked by C isotopic analysis of soil fractions which were labelled due to 13C depletion of the commercial CO2 used for atmospheric enrichment. This data constrains estimates of C sequestration (absolute upper bound) and indicates where in soils potentially sequestered C is stored. Cnew entered soils at an initial rate of 210±42 g C m–2 year–1, but only 554±39 g Cnew m–2 were recovered after 6 years due to the low mean residence time of 1.8 years. Previous process-oriented measurements did not indicate increased plant–soil C fluxes at elevated CO2 in the same system (13C kinetics in soil microbes and fine roots after pulse labelling, and minirhizotron observations). Overall experimental evidence suggests that C storage under elevated CO2 occurred only in rapidly turned-over fractions such as plants and detritus, and that potential extra soil C inputs were rapidly re-mineralised. We argue that this inference does not conflict with the observed increases in photosynthetic fixation at elevated CO2, because these are not good predictors of plant growth and soil C fluxes for allometric reasons. C sequestration in this natural system may also be lower than suggested by plant biomass responses to elevated CO2 because C storage may be limited by stabilisation of Cnew in slowly turned-over soil fractions (a prerequisite for long-term storage) rather than by the magnitude of C inputs per se. 相似文献
4.
Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO2 enrichment 总被引:1,自引:0,他引:1
Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO2 enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO2 compared to ambient CO2. In response to elevated CO2, the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual
seed size did not change. These results suggest that rising atmospheric CO2 may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes,
notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO2-rich atmosphere. 相似文献
5.
Interactions between atmospheric CO2 enrichment and soil fauna 总被引:3,自引:0,他引:3
We have reviewed the responses of soil fauna to increased concentrations of atmospheric CO2 and the consequent climate change. These will affect several attributes of animal populations and communities including their
density, biomass, diversity, activity, rates of consumption, life history parameters and migration ability. Changes in the
quality and quantity of litter and global warming are the main factors which are expected to modify soil fauna. Although changes
have been observed in several attributes of the soil fauna as a consequence of increased concentrations of atmospheric CO2, no general trend which might allow to the prediction of a general pattern of response has been identified. Because of the
complexity of the biological mechanisms and the synergetic action of several factors, the few resulting responses reported
in the literature are inconclusive. However, some aspects of the situation deserve more attention. These include the consequences
of (1) changes in the food resources for soil fauna in the litter layer and in the rhizosphere, (2) the consumption of low
quality litter by the macrofauna, (3) the change in life span in response to temperature elevation, (4) the enhancement of
earthworm burrowing activity and (5) the changes in community composition arising because of specific differential resistance
to adverse conditions.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
6.
Barley (Hordeum vulgare L. cv. Digger) was grown for 22 d inenclosed chambers with a CO2 enrichment of 35, 155, 400 or 675µmol CO2 mol1. CO2 enrichment increased photosyntheticcapacity in the plants grown at either of the two highest levelsof pCO2. A CO2 enrichment of 675µmol CO2 caused a significantincrement of shoot dry weight, whereas no changes were observedin fresh weight, chlorophyll or protein levels. At a light intensityof 860µmol m2s1 CO2 enrichment caused photosyntheticcapacity to increase by 250%, whereas no effect was observedat 80 µmol m2 s1. Over time, photosynthesisdecreased by 70% independent of CO2. A time-dependent increasein the level of extractable fructose was observed whereas totalextractable carbohydrate only changed slightly. Key words: Carbohydrates, CO2 enrichment, Hordeum vulgare, photosynthesis, respiration 相似文献
7.
Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil 总被引:2,自引:0,他引:2
Markus Daepp Daniel Suter Jos P. F. Almeida Hubert Isopp Ueli A. Hartwig Marco Frehner Herbert Blum Josef Nsberger Andreas Lüscher 《Global Change Biology》2000,6(7):805-816
After a step increase in the atmospheric partial pressure of CO2 (pCO2), the availability of mineral N may be insufficient to meet the plant's increased demand for N. Over time, however, the ecosystem may adapt to the new conditions, and a new equilibrium may be established in the fluxes of C and N. This would result in a higher dry mass (DM) yield response of the plants to elevated pCO2. The effect of elevated atmospheric pCO2 (60 Pa pCO2) was studied in Lolium perenne L. swards with two N fertilization treatments (14 and 56 g m?2 y?1) in a six‐year FACE (Free Air Carbon dioxide Enrichment) experiment. In the high N treatment, the input of N with fertilizer considerably exceeded the export of N with the harvested plant material in both CO2 treatments leading to an apparent net input of N into the ecosystem. Accordingly, the proportion of harvested N derived from 15N labelled fertilizer N, applied throughout the experiment (< 6 years), increased over the years. Under these high N conditions, the annual DM yield response of the Lolium perenne sward to elevated pCO2 increased (from 7% in 1993 to 25% in 1998). In parallel, the response of N yield to elevated pCO2 increased, and the initially negative effect of elevated pCO2 on specific leaf area (SLA) disappeared. The high N input system seemed to overcome in part an initially limiting effect of N on the yield response to elevated pCO2 within a few years. In contrast, there was no apparent net input of N into the ecosystem in the low N treatment, because N fertilization just compensated the export of N with the harvested plant material. Accordingly, the proportion of harvested N yield, derived from fertilizer N, which was applied throughout the experiment, remained low. At low N, the availability of mineral N strongly limited plant growth and yield production in both CO2 treatments; the low yields of DM and N, the low concentration of N in the plant material, and the low SLA reflected this. Although the plants grew under the same environmental conditions and the same management treatment as plants in the high N treatment, the response of DM yields to elevated pCO2 in the low N treatment remained weak throughout the experiment (5% in 1993 and 9% in 1998). The results are discussed in the context of the sizes of the different N pools in the soil, the allocation of N within the plant and the possible effects on temporal immobilization, and the availability of mineral N for yield production as affected by elevated pCO2 and N fertilization. 相似文献
8.
Detecting changes in soil carbon in CO2 enrichment experiments 总被引:1,自引:0,他引:1
Bruce A. Hungate Robert B. Jackson Christopher B. Field F. Stuart Chapin III 《Plant and Soil》1995,187(2):135-145
After four growing seasons, elevated CO2 did not significantly alter surface soil C pools in two intact annual grasslands. However, soil C pools in these systems are large compared to the likely changes caused by elevated CO2. We calculated statistical power to detect changes in soil C, using an approach applicable to all elevated CO2 experiments. The distinctive isotopic signature of the fossil-fuel-derived CO2 added to the elevated CO2 treatment provides a C tracer to determine the rate of incorporation of newly-fixed C into soil. This rate constrains the size of the possible effect of eievated CO2 on soil C. Even after four years of treatment, statistical power to detect plausible changes in soil C under elevated CO2 is quite low. Analysis of other elevated CO2 experiments in the literature indicates that either CO2 does not affect soil C content, or that reported CO2 effects on soil C are too large to be a simple consequence of increased plant carbon inputs, suggesting that other mechanisms are involved, or that the differences are due to chance. Determining the effects of elevated CO2 on total soil C and long-term C storage requires more powerful experimental techniques or experiments of longer duration. 相似文献
9.
The anthropogenic rise in atmospheric CO2 is expected to impact carbon (C) fluxes not only at ecosystem level but also at the global scale by altering C cycle processes in soils. At the Swiss Canopy Crane (SCC), we examined how 7 years of free air CO2 enrichment (FACE) affected soil CO2 dynamics in a ca. 100‐year‐old mixed deciduous forest. The use of 13C‐depleted CO2 for canopy enrichment allowed us to trace the flow of recently fixed C. In the 7th year of growth at ~550 ppm CO2, soil respiratory CO2 consisted of 39% labelled C. During the growing season, soil air CO2 concentration was significantly enhanced under CO2‐exposed trees. However, elevated CO2 failed to stimulate cumulative soil respiration (Rs) over the growing season. We found periodic reductions as well as increases in instantaneous rates of Rs in response to elevated CO2, depending on soil temperature and soil volumetric water content (VWC; significant three‐way interaction). During wet periods, soil water savings under CO2‐enriched trees led to excessive VWC (>45%) that suppressed Rs. Elevated CO2 stimulated Rs only when VWC was ≤40% and concurrent soil temperature was high (>15 °C). Seasonal Q10 estimates of Rs were significantly lower under elevated (Q10=3.30) compared with ambient CO2 (Q10=3.97). However, this effect disappeared when three consecutive sampling dates of extremely high VWC were disregarded. This suggests that elevated CO2 affected Q10 mainly indirectly through changes in VWC. Fine root respiration did not differ significantly between treatments but soil microbial biomass (Cmic) increased by 14% under elevated CO2 (marginally significant). Our findings do not indicate enhanced soil C emissions in such stands under future atmospheric CO2. It remains to be shown whether C losses via leaching of dissolved organic or inorganic C (DOC, DIC) help to balance the C budget in this forest. 相似文献
10.
开放式空气CO2浓度增高(FACE)对稻田土壤微生物的影响 总被引:32,自引:9,他引:32
1 引 言公元 175 0年前 ,大气CO2 浓度基本保持 2 80 μmol·mol-1左右 .工业革命后 ,其浓度逐渐上升 ,上升速度在 196 0年后加快 ,其中 80年代以来上升最快 .从 80年代到 90年代期间 ,CO2 浓度从 330 μmol·mol-1增加到 35 4 μmol·mol-1,平均每年递增 1.8μmol·mol-1[2 ] .据IPCC(1995 )估计 ,到 2 1世纪末 ,CO2 浓度将由目前的 35 5 μmol·mol-1上升到 70 0 μmol·mol-1.这势必对整个生物界和地球生态环境产生深刻的影响 .因此 ,国内外已开展了大量的研究工作 ,获得了许多研究结… 相似文献
11.
Takeshi Tokida Weiguo Cheng Minaco Adachi Toshinori Matsunami Hirofumi Nakamura Masumi Okada Toshihiro Hasegawa 《Plant and Soil》2013,364(1-2):131-143
Purpose
We attempted to determine the contribution of entrapped gas bubbles to the soil methane (CH4) pool and their role in CH4 emissions in rice paddies open to the atmosphere.Methods
We buried pots with soil and rice in four treatments comprising two atmospheric CO2 concentrations (ambient and ambient +200 μmol mol?1) and two soil temperatures (ambient and ambient +2 °C). Pots were retrieved for destructive measurements of rice growth and the gaseous CH4 pool in the soil at three stages of crop development: panicle formation, heading, and grain filling. Methane flux was measured before pot retrieval.Results
Bubbles that contained CH4 accounted for a substantial fraction of the total CH4 pool in the soil: 26–45 % at panicle formation and 60–68 % at the heading and grain filling stages. At panicle formation, a higher CH4 mixing ratio in the bubbles was accompanied by a greater volume of bubbles, but at heading and grain filling, the volume of bubbles plateaued and contained ~35 % CH4. The bubble-borne CH4 pool was closely related to the putative rice-mediated CH4 emissions measured at each stage across the CO2 concentration and temperature treatments. However, much unexplained variation remained between the different growth stages, presumably because the CH4 transport capacity of rice plants also affected the emission rate.Conclusions
The gas phase needs to be considered for accurate quantification of the soil CH4 pool. Not only ebullition but also plant-mediated emission depends on the gaseous-CH4 pool and the transport capacity of the rice plants. 相似文献12.
EVGENIA BLAGODATSKAYA SERGEY BLAGODATSKY MAXIM DORODNIKOV YAKOV KUZYAKOV 《Global Change Biology》2010,16(2):836-848
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long‐term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root‐free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate‐induced respiration response after glucose and/or yeast extract addition to the soil. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ‐values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum<Beta vulgaris<Populus deltoides. N deficiency affected microbial growth rates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ‐value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates) rather than total microbial biomass amount are sensitive to increased atmospheric CO2. We conclude that the more abundant available organics released by roots at elevated CO2 altered the ecological strategy of the soil microbial community specifically a shift to a higher contribution of fast‐growing r‐selected species was observed. These changes in functional structure of the soil microbial community may counterbalance higher C input into the soil under elevated atmospheric CO2 concentration. 相似文献
13.
28种园林植物对大气CO2浓度增加的生理生态反应 总被引:6,自引:0,他引:6
通过对28种园林植物在不同CO2浓度水平下的气体交换参数的观测,分析了净光合速率、气孔导度、蒸腾速率和水分利用效率等生理生态指标的变化趋势与规律.结果表明,所测植物净光合速率和水分利用效率随CO2浓度升高而线性增加,但不同植物种类对高CO2浓度的反应存在较大差异.气孔导度和蒸腾速率与CO2浓度呈线性负相关关系.当CO2浓度倍增(350~700 μmol·mol-1)时,28种园林植物净光合速率平均提高31.2%,气孔导度降低16.5%,蒸腾速率下降11.7%,而水分利用效率则提高了49.2%.不同光合途径的植物净光合速率和水分利用效率受CO2浓度增加的影响程度为C3植物较大,C4植物较小, CAM植物介于两者之间.对不同生活型植物而言,影响程度则为草本C3植物较大,乔木C3植物较小,灌木C3植物居于两者之间. 相似文献
14.
Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment 总被引:1,自引:0,他引:1
Yamakawa Yasuhiro Saigusa Masahiko Okada Masumi Kobayashi Kazuhiko 《Plant and Soil》2004,259(1-2):367-372
Plant and Soil - Using free-air CO2 enrichment (FACE) we grew rice crops at ambient or elevated (ca.&;nbsp;250&;nbsp;μmol mol?1 above ambient) and evaluated soil nutrition status... 相似文献
15.
修复效率低一直是植物修复技术需要解决的关键问题之一.基于我国的CO2减排压力和CO2对植物生长的必要性,选择C3植物绿豆和C4植物玉米作为修复植物,以DEHP为目标污染物,探索增施CO2对植物修复土壤DEHP污染的影响.结果表明:DEHP对两种植物生长和根际微环境都产生了抑制性影响.增施CO2后,两种植物地上干质量显著增加,叶片SOD酶活性明显下降,根际土壤碱性磷酸酶活性增加,根际微生物群落结构改变,根际耐DE-HP胁迫微生物数量增加,表明增施CO2对促进植物生长、增强植物抗DEHP胁迫能力、改善根际微环境有积极作用.增施CO2还促进了两种植物对DEHP的吸收,特别是植物地下部分.这些共同作用导致增施CO2后的两种植物根际DEHP残留浓度明显下降,土壤污染植物修复效率提高.整体上看,增施CO2对C3植物绿豆的影响明显大于C4植物玉米.可以将增施CO2作为强化植物修复过程的措施之一. 相似文献
16.
I. TANYA HANDA CHRISTIAN KÖRNER STEPHAN HÄTTENSCHWILER † 《Global Change Biology》2006,12(12):2417-2430
Northern latitude and upper altitude climatic treelines have received increasing attention given their potential sensitivity to atmospheric and climate change. While greater radial stem growth at treeline sites in recent decades has been attributed largely to increasing temperature, rising atmospheric CO2 concentration may also be contributing to this growth stimulation. Tree ring increments of mature Larix decidua and Pinus uncinata were measured over 4 years in a free air CO2 enrichment experiment at treeline in the Swiss Central Alps (2180 m a.s.l.). In addition, a one‐time defoliation treatment in the second year (2002) of the experiment was used to simulate one of the common natural insect outbreak events. In response to elevated atmospheric CO2, Larix showed a cumulative 4‐year growth response of+41%, with particularly strong responses in the third and fourth year. This increase in radial stem wood growth was the result of more latewood production, in particular, the formation of larger tracheids, rather than a greater number of cells. In contrast, Pinus showed no change in ring width to elevated [CO2], neither in each of the treatment years, nor in the cumulative response over 4 years, although an increase in tracheid size was observed in the third year. Defoliation led to a pronounced decrease in annual ring width of both species, marked in particular by less latewood production, in the treatment, as well as subsequent years. There was no significant interaction between defoliation and CO2 enrichment. Although Pinus showed no growth response to CO2, the positive growth response observed in Larix after 4 years of CO2 enrichment implies that the sensitivity of treeline trees to global change may not be purely temperature driven. We conclude that the open sparse canopy in the treeline ecotone favours the indeterminate growth strategy of the early successional Larix when neither weather nor carbon are limiting, whereas the later successional Pinus does not show any indication of more vigorous growth under future higher atmospheric CO2 concentrations. 相似文献
17.
Yolima Carrillo Elise Pendall Feike A. Dijkstra Jack A. Morgan Joanne M. Newcomb 《Plant and Soil》2011,347(1-2):339-350
Warming and elevated atmospheric CO2 (eCO2) can elicit contrasting responses on different SOM pools, thus to understand the effects of combined factors it is necessary to evaluate individual pools. Over two years, we assessed responses to eCO2 and warming of SOM pools, their susceptibility to decomposition, and whether these responses were mediated by plant inputs in a semi-arid grassland at the PHACE (Prairie Heating and CO2 Enrichment) experiment. We used long-term soil incubations and assessed relationships between plant inputs and the responses of the labile and resistant pools. We found strong and contrasting effects of eCO2 and warming on the labile C pool. In 2008 labile C was increased by eCO2 and was positively related to plant biomass. In contrast, in 2007 eCO2 and warming had interactive effects on the labile C, and the pool size was not related to plant biomass. Effects of warming and eCO2 in this year were consistent withtreatment effects on soil moisture and temperature and their effects on labile C decomposition. The decomposition rate of the resistant C was positively related to indicators of plant C inputs. Our approach demonstrated that SOM pools in this grassland can have early and contrasting responses to climate change factors. The labile C pool in the mixed-grass prairie was highly responsive to eCO2 and warming but the factors behind such responses were highly dynamic across years. Results suggest that in this grassland the resistant C pool could be negatively affected by increases in plant-production driven available soil C. 相似文献
18.
Atmospheric CO2 enrichment is increasingly being reported to inhibit leaf and whole-plant respiration. It is not known, however, whether this response is unique to foliage or whether woody-tissue respiration might be affected as well. This was examined for mid-canopy stem segments of white oak (Quercus alba L.) trees that had been grown in open-top field chambers and exposed to either ambient or ambient + 300 µmol mol?1 CO2 over a 4-year period. Stem respiration measurements were made throughout 1992 by using an infrared gas analyzer and a specially designed in situ cuvette. Rates of woody-tissue respiration were similar between CO2 treatments prior to leaf initiation and after leaf senescence, but were several fold greater for saplings grown at elevated concentrations of CO2 during much of the growing season. These effects were most evident on 7 July when stem respiration rates for trees exposed to elevated CO2 concentrations were 7.25 compared to 3.44 µmol CO2 m?2 s?1 for ambient-grown saplings. While other explanations must be explored, greater rates of stem respiration for saplings grown at elevated CO2 concentrations were consistent with greater rates of stem growth and more stem-wood volume present at the time of measurement. When rates of stem growth were at their maximum (7 July to 3 August), growth respiration accounted for about 80 to 85% of the total respiratory costs of stems at both CO2 treatments, while 15 to 20% supported the costs of stem-wood maintenance. Integrating growth and maintenance respiration throughout the season, taking into account treatment differences in stem growth and volume, indicated that there were no significant effects of elevated CO2 concentration on either respiratory process. Quantitative estimates that could be used in modeling the costs of woody-tissue growth and maintenance respiration are provided. 相似文献
19.
Rozema J. Lenssen G. M. van de Staaij J. W. M. Tosserams M. Visser A. J. Broekman R. A. 《Plant Ecology》1997,128(1-2):183-191
UV-B radiation is just one of the environmental factors, that affect plant growth. It is now widely accepted that realistic assessment of plant responses to enhanced UV-B should be performed at sufficiently high Photosynthetically Active Radiation (PAR), preferably under field conditions. This will often imply, that responses of plants to enhanced UV-B in the field will be assessed under simultaneous water shortage, nutrient deficiency and variation of temperature. Since atmospheric CO2 enrichment, global warming and increasing UV-B radiation represent components of global climatic change, interactions of UV-B with CO2 enrichment and temperature are particularly relevant. Only few relevant UV-B× CO2 interaction studies have been published. Most of these studies refer to greenhouse experiments. We report a significant CO2 × UV-B interaction for the total plant dry weight and root dry weight of the C3-grass Elymus athericus. At elevated CO2 (720 mol mol-1, plant growth was much less reduced by enhanced UV-B than at ambient atmospheric CO2 although there were significant (positive) CO2 effects and (negative) UV-B effects on plant growth. Most other CO2 × UV-B studies do not report significant interactions on total plant biomass. This lack of CO2 × UV-B interactions may result from the fact that primary metabolic targets for CO2 and UVB are different. UV-B and CO2 may differentially affect plant morphogenetic parameters: biomass allocation, branching, flowering, leaf thickness, emergence and senescence. Such more subtle interactions between CO2 and UV-B need careful and long term experimentation to be detected. In the case of no significant CO2× UV-B interactions, combined CO2 and UV-B effects will be additive. Plants differ in their response to CO2 and UV-B, they respond in general positively to elevated CO2 and negatively to enhanced UV-B. Moreover, plant species differ in their responsiveness to CO2 and UV-B. Therefore, even in case of additive CO2 and UV-B effects, plant competitive relationships may change markedly under current climatic change with simultaneous enhanced atmospheric CO2 and solar UV-B radiation. 相似文献
20.
JOHN LICHTER SHARON A. BILLINGS SUSAN E. ZIEGLER DEEYA GAINDH REBECCA RYALS ADRIEN C. FINZI ROBERT B. JACKSON ELIZABETH A. STEMMLER WILLIAM H. SCHLESINGER 《Global Change Biology》2008,14(12):2910-2922
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2. 相似文献