首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We examined variation in leaf size and specific leaf area (SLA) in relation to the distribution of 22 chaparral shrub species on small-scale gradients of aspect and elevation. Potential incident solar radiation (insolation) was estimated from a geographic information system to quantify microclimate affinities of these species across north- and south-facing slopes. At the community level, leaf size and SLA both declined with increasing insolation, based on average trait values for the species found in plots along the gradient. However, leaf size and SLA were not significantly correlated across species, suggesting that these two traits are decoupled and associated with different aspects of performance along this environmental gradient. For individual species, SLA was negatively correlated with species distributions along the insolation gradient, and was significantly lower in evergreen versus deciduous species. Leaf size exhibited a negative but non-significant trend in relation to insolation distribution of individual species. At the community level, variance in leaf size increased with increasing insolation. For individual species, there was a greater range of leaf size on south-facing slopes, while there was an absence of small-leaved species on north-facing slopes. These results demonstrate that analyses of plant functional traits along environmental gradients based on community level averages may obscure important aspects of trait variation and distribution among the constituent species.  相似文献   

2.
It is widely assumed that higher levels of intraspecific variability in one or more traits should allow species to persist under a wider range of environmental conditions. However, few studies have examined whether species that exhibit high variability are found in a wider range of environmental conditions, and whether variability increases the ability of a species to adapt to prevailing ecological gradients. We used four plant functional traits, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N) and maximum plant height in 49 species across a strong environmental gradient to answer three questions: 1) is there evidence for ‘high‐variability’ species (that is, species which show high variability in multiple traits, simultaneously)? 2) are species with more variable traits present across a wider range of environmental conditions than less variable species? And 3) whether more variable species show better trait–environment matching to the prevailing abiotic (soil moisture) gradient at the site? We found little evidence for a ‘high‐variability’ species. Variability was correlated for two leaf traits, SLA and LDMC, while variability in leaf traits and plant height were not correlated. We found little evidence that more variable species were present in more diverse conditions: only variation in SLA was correlated with a wider ecological niche breadth. For plant traits along the soil‐moisture gradient, higher variability led to better trait–environment matching in half of measured traits. Overall, we found little support for the existence of ‘high‐variability’ species, but that variability in SLA is correlated with a wider ecological breadth. We also found evidence that variation in traits can improve trait–environment matching, a relationship which may facilitate our understanding ecological breadth along prevailing gradients, and community assembly on the basis of traits.  相似文献   

3.
Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait–environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait–environment correlations and literature‐based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient‐wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.  相似文献   

4.
  • Functional traits respond to environmental drivers, hence evaluating trait‐environment relationships across spatial environmental gradients can help to understand how multiple drivers influence plant communities. Global‐change drivers such as changes in atmospheric nitrogen deposition occur worldwide, but affect community trait distributions at the local scale, where resources (e.g. light availability) and conditions (e.g. soil pH) also influence plant communities.
  • We investigate how multiple environmental drivers affect community trait responses related to resource acquisition (plant height, specific leaf area (SLA), woodiness, and mycorrhizal status) and regeneration (seed mass, lateral spread) of European temperate deciduous forest understoreys. We sampled understorey communities and derived trait responses across spatial gradients of global‐change drivers (temperature, precipitation, nitrogen deposition, and past land use), while integrating in‐situ plot measurements on resources and conditions (soil type, Olsen phosphorus (P), Ellenberg soil moisture, light, litter mass, and litter quality).
  • Among the global‐change drivers, mean annual temperature strongly influenced traits related to resource acquisition. Higher temperatures were associated with taller understoreys producing leaves with lower SLA, and a higher proportional cover of woody and obligate mycorrhizal (OM) species. Communities in plots with higher Ellenberg soil moisture content had smaller seeds and lower proportional cover of woody and OM species. Finally, plots with thicker litter layers hosted taller understoreys with larger seeds and a higher proportional cover of OM species.
  • Our findings suggest potential community shifts in temperate forest understoreys with global warming, and highlight the importance of local resources and conditions as well as global‐change drivers for community trait variation.
  相似文献   

5.
Question: Is the response of plant traits to environment at the community level similar when considering species abundance and when considering species presence only? Location: Mountain grasslands, central Argentina. Methods: We used data from 57 floristic samples, ordinated through DCCA along moisture and grazing gradients combined with trait values from 85 species (plant height, leaf area, leaf thickness leaf toughness and SLA). For each sample, we calculated the weighted average (considering species abundance) and the simple average (considering only species presence). Through multiple regressions we analysed how each average (dependent variable) responded to moisture and grazing (DCCA scores along Axes 1 and 2, respectively, as independent variables). Results: Weighted averages of all traits were significantly associated to both gradients, while simple averages did not always respond. In some cases the responses followed similar but weaker trends than the responses of weighted averages, but in other cases these responses were qualitatively different. Traits more associated with size (plant height, leaf area, leaf thickness) responded more consistently (similar trends for both averages) to grazing than to moisture, while traits more associated with plant resource acquisition (SLA, leaf toughness) responded more consistently to moisture than to grazing. Conclusion: The trait values and combinations which determine the probability of species presence are not necessary the same as those which determine their probability of becoming abundant. To understand community assembly rules, both species presence and species abundance should be taken into account as the result of different, although closely linked, filtering processes.  相似文献   

6.
We applied the leaf‐height‐seed (LHS) ecology strategy scheme (a combination of three ecologically important traits: specific leaf area (SLA), seed mass and plant height) intraspecifically to two widespread European forest herbs along a latitudinal gradient. The aims of this study were to quantify LHS trait variation, disentangle the environmental factors affecting these traits and compare the within‐species LHS trait relationships with latitude to previously established cross‐species comparisons. We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900–2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4% increase in plant height with every degree northward shift (almost a two‐fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three‐factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring‐flowering Anemone was affected more by temperature, whereas early‐summer flowering Milium was affected more by local and other latitude‐related factors. Finally, previously reported cross‐species correlations between LHS traits and latitude were generally unsupported by our within‐species approach.  相似文献   

7.
Question : How accurately can a suite of suggested functional traits predict plant species response to succession from semi‐open woodland to closed deciduous canopy forest? Location : Southeastern Sweden. Methods : Abundance of 46 field‐layer plant species in a temperate deciduous forest, measured as frequency of occupied plots, was estimated in 1961, 1970 and 2003. Abundance change over time across species was tested for correlations with functional traits and literature information on habitat preference. Results : Increase in abundance was positively correlated with specific leaf area (SLA), weakly negatively correlated with seed mass and not significantly correlated with plant height or start, peak and length of the flowering period. Change in abundance was correlated with the Ellenberg light indicator value, whereas no correlations were found with Ellenberg values for nitrogen, calcium and moisture, or forest preference according to the literature. Conclusions : SLA was a better predictor of how field layer plants responded to succession from semi‐open woodland to closed canopy forest than empirically‐derived measures of habitat preference. The same holds for SLA in relation to seed size, indicating that interactions in the established life‐cycle phase are more important than the recruitment phase for species response to succession.  相似文献   

8.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

9.
Question: Is the assumption of trait independence implied in Westoby's (1998) leaf‐height‐seed (LHS) ecology strategy scheme upheld in a Mediterranean grazing system dominated by annuals? Is the LHS approach applicable at the community level? Location: Northern Israel. Methods: LHS traits (specific leaf area [SLA], plant height and seed mass), and additional leaf traits (leaf dry matter content [LDMC], leaf area, and leaf content of nitrogen [LNC], carbon [LCC], and phosphorus [LPC]), were analyzed at the species and community levels. Treatments included manipulations of grazing intensity (moderate and heavy) and protection from grazing. We focused on species comprising 80% of biomass over all treatments, assuming that these species drive trait relationships and ecosystem processes. Results: At the species level, SLA and seed mass were negatively correlated, and plant height was positively correlated to LCC. SLA, seed mass, and LPC increased with protection from grazing. At the community level, redundancy analysis revealed one principal gradient of variation: SLA, correlated to grazing, versus seed mass and plant height, associated with protection from grazing. We divided community functional parameters into two groups according to grazing response: (1) plant height, seed mass, LDMC, and LCC, associated with protection from grazing, and (2) SLA, associated with grazing. Conclusions: The assumption of independence between LHS traits was not upheld at the species level in this Mediterranean grazing system. At the community level, the LHS approach captured most of the variation associated with protection from grazing, reflecting changes in dominance within the plant community.  相似文献   

10.
Intra‐species variation in specific leaf area (SLA) and leaf area (LA) provides mechanistic insight into the persistence and function of plants, including their likely success under climate change and their suitability for revegetation. We measured SLA and LA in 101 Australian populations of the perennial shrub Dodonaea viscosa (L.) Jacq. subsp. angustissima (narrow‐leaf hop‐bush) (Sapindaceae). Populations were located across about a 1000 km north–south gradient, with climate grading from arid desert to mesic Mediterranean. We also measured leaves from 11 populations across an elevational gradient (300–800 m asl), where aridity and temperature decrease with elevation. We used regression and principal component analyses to relate leaf traits to the abiotic environment. SLA displayed clinal variation, increasing from north to south and correlated with latitude and the first principal component of joint environmental variables. Both SLA and LA correlated positively with most climatic and edaphic variables. Across latitude, LA showed more variability than SLA. Changes in leaf density and thickness may have caused the relative stability of SLA. Only LA decreased with elevation. The absence of a SLA response to elevation could be a consequence of abiotic conditions that favour low SLA at both ends of the elevational gradient. We demonstrated that the widely distributed narrow‐leaf hop‐bush shows considerable variability in LA and SLA, which allows it to persist in a broad environmental envelope. As this shrub is widely used for revegetation in Australia, South America and the Asia‐Pacific region, our results are consistent with the notion that seed used to revegetate mesic environments could be sourced from more arid areas to increase seed suitability to future climate change.  相似文献   

11.
Local species coexistence is the outcome of abiotic and biotic filtering processes which sort species according to their trait values. However, the capacity of trait‐based approaches to predict the variation in realized species richness remains to be investigated. In this study, we asked whether a limited number of plant functional traits, related to the leaf‐height‐seed strategy scheme and averaged at the community level, is able to predict the variation in species richness over a flooding disturbance gradient. We further investigated how these mean community traits are able to quantify the strength of abiotic and biotic processes involved in the disturbance–productivity–diversity relationship. We thus tested the proposal that the deviation between the fundamental species richness, assessed from ecological niche‐based models, and realized species richness, i.e. field‐observed richness, is controlled by species interactions. Flooding regime was determined using a detailed hydrological model. A precise vegetation sampling was performed across 222 quadrats located throughout the flooding gradient. Three core functional traits were considered: specific leaf area (SLA), plant height and seed mass. Species richness showed a hump‐shaped response to disturbance and productivity, but was better predicted by only two mean community traits: SLA and height. On the one hand, community SLA that increased with flooding, controlled the disturbance‐diversity relationship through habitat filtering. On the other hand, species interactions, the strength of which was captured by community height values, played a strong consistent role throughout the disturbance gradient by reducing the local species richness. Our study highlights that a limited number of simple, quantitative, easily measurable functional traits can capture the variation in plant species richness at a local scale and provides a promising quantification of key community assembly mechanisms.  相似文献   

12.
The Mojave Desert of North America has become fire‐prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post‐fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life‐history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life‐history traits and evaluated whether these groups exhibited a consistent fire‐response. Six life‐history traits varied significantly between burned and unburned areas in short (up to 4 years) or long‐term (up to 52 years) post‐fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life‐history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind‐dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non‐wind dispersed seeds, and taller heights. Our results show that PFTs based on life‐history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long‐lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life‐history strategies.  相似文献   

13.
Correlations between community‐weighted mean (CWM) traits and environmental gradients are often assumed to quantify the adaptive value of traits. We tested this assumption by comparing these correlations with models of survival probability using 46 perennial species from long‐term permanent plots in pine forests of Arizona. Survival was modelled as a function of trait × environment interactions, plant size, climatic variation and neighbourhood competition. The effect of traits on survival depended on the environmental conditions, but the two statistical approaches were inconsistent. For example, CWM‐specific leaf area (SLA) and soil fertility were uncorrelated. However, survival was highest for species with low SLA in infertile soil, a result which agreed with expectations derived from the physiological trade‐off underpinning leaf economic theory. CWM trait–environment relationships were unreliable estimates of how traits affected survival, and should only be used in predictive models when there is empirical support for an evolutionary trade‐off that affects vital rates.  相似文献   

14.
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population‐level analogous above‐ and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species‐specific responses to combinations of influences. The strength of intraspecific above‐ and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above‐ and belowground traits to these multiple environmental factors together with partially species‐specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource‐acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above‐ and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species‐centred ecological theories on how plants respond to their environments (e.g. competitive/stress‐tolerant/ruderal and response‐effect trait frameworks) to be adapted to account for distinct plant‐environment interactions among distinct individuals of the same species and parts of the same individual.  相似文献   

15.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

16.
Wetland indicator status (WIS ) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species‐level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species‐level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA ), stem specific gravity (SSG ), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species‐level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG , seed mass, % leaf carbon and height, and for woody species occurred for height, SSG , and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low‐density stem tissue. Adaptations to drier habitats in the riparian zone include short, high‐density cavitation‐resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.  相似文献   

17.
Recent investigations of relationships among plant traits have generated important insights into plant form and function. However, relationships involving leaf area, leaf shape and plant height remain poorly resolved. Previous work has also focused on correlations between average trait values for individual species. It is unclear whether similar relationships occur within species. We searched for novel plant trait correlations by comparing leaf area, leaf circularity, specific leaf area (SLA) and plant height among 16 common woody plant species from a temperate forest in New Zealand. Analyses were conducted both within species (intra‐specifically) and among species (inter‐specifically) to determine whether trait correlations were scale dependent. Leaf area was unrelated to other leaf traits inter‐specifically. However, leaf area declined with plant height and increased with SLA intra‐specifically. Leaf circularity decreased with plant height inter‐specifically, but increased with plant height intra‐specifically. SLA increased with plant height both inter‐ and intra‐specifically. Leaf circularity increased with SLA inter‐specifically, but decreased with SLA intra‐specifically. Overall results showed that leaf shape, SLA and plant height are interrelated. However, intra‐specific relationships often differed substantially from inter‐specific relationships, suggesting that the processes shaping relationships between this suite of plant traits are scale‐dependent.  相似文献   

18.
Functional traits play a key role in driving biodiversity effects on ecosystem functioning. Here, we examine the geographical distributions of three key functional traits in New World palms (Arecaceae), an ecologically important plant group, and their relationships with current climate, soil and glacial–interglacial climate change. We combined range maps for the New World (N = 541 palm species) with data on traits (leaf size, stem height and fruit size), representing the leaf–height–seed plant strategy scheme of Westoby, to estimate median trait values for palm species assemblages in 110 × 110‐km grid cells. Spatial and non‐spatial multi‐predictor regressions were used with the Akaike Information Criterion to identify minimum adequate models. Present‐day seasonality in temperature and precipitation played a major role in explaining geographical variation of all traits. Mean annual temperature and annual precipitation were additionally important for median leaf size. Glacial–interglacial temperature change was the most important predictor for median fruit size. Large‐scale soil gradients played only a minor role overall. These results suggest that current climate (larger median trait values with increasing seasonality) and glacial–interglacial temperature change (larger median fruit size with increasing Quaternary temperature anomaly) are important drivers for functional trait distributions of New World palms. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 602–617.  相似文献   

19.
Leaf dark respiration (R) is one of the most fundamental physiological processes in plants and is a major component of terrestrial CO2 input to the atmosphere. Still, it is unclear how predictably species vary in R along broad climate gradients. Data for R and other key leaf traits were compiled for 208 woody species from 20 sites around the world. We quantified relationships between R and site climate, and climate-related variation in relationships between R and other leaf traits. Species at higher-irradiance sites had higher mean R at a given leaf N concentration, specific leaf area (SLA), photosynthetic capacity (Amass) or leaf lifespan than species at lower-irradiance sites. Species at lower-rainfall sites had higher mean R at a given SLA or Amass than species at higher-rainfall sites. On average, estimated field rates of R were higher at warmer sites, while no trend with site temperature was seen when R was adjusted to a standard measurement temperature. Our findings should prove useful for modelling plant nutrient and carbon budgets, and for modelling vegetation shifts with climate change.  相似文献   

20.
While soil ecosystems undergo important modifications due to global change, the effect of soil properties on plant distributions is still poorly understood. Plant growth is not only controlled by soil physico-chemistry but also by microbial activities through the decomposition of organic matter and the recycling of nutrients essential for plants. A growing body of evidence also suggests that plant functional traits modulate species’ response to environmental gradients. However, no study has yet contrasted the importance of soil physico-chemistry, microbial activities and climate on plant species distributions, while accounting for how plant functional traits can influence species-specific responses. Using hierarchical effects in a multi-species distribution model, we investigate how four functional traits related to resource acquisition (plant height, leaf carbon to nitrogen ratio, leaf dry matter content and specific leaf area) modulate the response of 44 plant species to climatic variables, soil physico-chemical properties and microbial decomposition activity (i.e. exoenzymatic activities) in the French Alps. Our hierarchical trait-based model allowed to predict well 41 species according to the TSS statistic. In addition to climate, the combination of soil C/N, as a measure of organic matter quality, and exoenzymatic activity, as a measure of microbial decomposition activity, strongly improved predictions of plant distributions. Plant traits played an important role. In particular, species with conservative traits performed better under limiting nutrient conditions but were outcompeted by exploitative plants in more favorable environments. We demonstrate tight associations between microbial decomposition activity, plant functional traits associated to different resource acquisition strategies and plant distributions. This highlights the importance of plant–soil linkages for mountain plant distributions. These results are crucial for biodiversity modelling in a world where both climatic and soil systems are undergoing profound and rapid transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号