首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Large areas of tropical moist forests have been converted to cattle pastures, generating complex landscapes where different habitats are represented by small patches with an uneven spatial distribution. Here, we describe how bird communities respond to the different elements present in a livestock landscape that was originally dominated by tropical moist forest. We surveyed six habitats: open pastures, pastures with shrubs, early‐ and middle‐secondary forests, mature forest, and pastures invaded by bracken ferns (Pteridium aquilinum). Bird diversity was high in secondary and mature forests, and low in fern‐invaded sites and open pastures. Fern‐dominated sites had the lowest bird species richness, and trophic guild diversity of all habitats. Habitat structure affected both bird species richness and densities in similar ways. Tree species richness was the habitat attribute that had a bigger positive effect on bird species richness. Bird community structure varied among sampled habitats, separating habitats in two major groups (forests and pastures). Our data indicate that bracken fern‐invaded pastures were the worst habitat condition for avian communities. To increase bird diversity, we recommend to eliminate or manage bracken fern and to increase shrub and tree cover in open pastures to provide food resources and shelter for birds. Finally, we encourage the maintenance of secondary and mature forest remnants as a strategy to conserve resident birds within a landscape dominated by livestock activities.  相似文献   

2.
Species extinctions caused by the destruction and degradation of tropical primary forest may be at least partially mitigated by the expansion of regenerating secondary forest. However, the conservation value of secondary forest remains controversial, and potentially underestimated, since most previous studies have focused on young, single‐aged, or isolated stands. Here, we use point‐count surveys to compare tropical forest bird communities in 20–120‐year‐old secondary forest with primary forest stands in central Panama, with varying connectivity between secondary forest sites and extensive primary forest. We found that species richness and other metrics of ecological diversity, as well as the combined population density of all birds, reached a peak in younger (20‐year‐old) secondary forests and appeared to decline in older secondary forest stands. This counter‐intuitive result can be explained by the greater connectivity between younger secondary forests and extensive primary forests at our study site, compared with older secondary forests that are either (a) more isolated or (b) connected to primary forests that are themselves small and isolated. Our results suggest that connectivity with extensive primary forest is a more important determinant of avian species richness and community structure than forest age, and highlight the vital contribution secondary forests can make in conserving tropical bird diversity, so long as extensive primary habitats are adjacent and spatially connected.Abstract in Spanish is available with online material.  相似文献   

3.
Although it is clear that the farmlands neighbouring fragmented forests are utilized by some forest birds, it is not clear how birds in general respond to farmland habitat mosaic. An effort was made to determine how bird density and foraging assemblages were influenced by farm structural characteristics and distance from forest edge. Thirty farms up to a distance of 12 km around Kakamega forest in western Kenya were studied. Farm structure entailed size, hedge volume, habitat heterogeneity, woody plant density, plant diversity and crop cover. Birds were surveyed using line transects and DISTANCE analyses and classified into six feeding guilds and three habitat associations. Size of farms increased away from the forest, as woody plant density, plant diversity, indigenous trees and subsistence crop cover declined. The most important farm structure variable was hedge volume, which enhanced bird species richness, richness of shrub‐land bird species and insectivorous bird density (R = 0.58, P < 0.01). Bird density increased with tree density while indigenous trees were suitable for insectivores and nectarivores. There were very few forest bird encounters. Agricultural practices incorporating maintenance of hedges and sound selection of agroforestry trees can enhance conservation of birds on farmland, though, not significantly for forest species.  相似文献   

4.
Agricultural conversion of tropical forests is a major driver of biodiversity loss. Slowing rates of deforestation is a conservation priority, but it is also useful to consider how species diversity is retained across the agricultural matrix. Here, we assess how bird diversity varies in relation to land use in the Taita Hills, Kenya. We used point counts to survey birds along a land‐use gradient that included primary forest, secondary vegetation, agroforest, timber plantation and cropland. We found that the agricultural matrix supports an abundant and diverse bird community with high levels of species turnover, but that forest specialists are confined predominantly to primary forest, with the matrix dominated by forest visitors. Ordination analyses showed that representation of forest specialists decreases with distance from primary forest. With the exception of forest generalists, bird abundance and diversity are lowest in timber plantations. Contrary to expectation, we found feeding guilds at similar abundances in all land‐use types. We conclude that whilst the agricultural matrix, and agroforest in particular, makes a strong contribution to observed bird diversity at the landscape scale, intact primary forest is essential for maintaining this diversity, especially amongst species of conservation concern.  相似文献   

5.
The conversion of tropical rain forests to oil palm plantations is a major threat to Southeast Asia's rich biodiversity. Fostering forest species communities in secondary forests, agroforestry systems, and plantations is therefore increasingly becoming a conservation focus. This study uses standardized transect‐based sampling to compare species richness, density and community composition of stream anuran assemblages among primary forests, repeatedly logged forests and oil palm plantations in northern Borneo. In primary forest streams, we recorded an average of 19 frog species, compared to 15 species in logged forests and 11 species in oil palm plantation streams. However, the high percentage of canopy cover above the plantation streams mitigated this loss to some extent. This study corroborates numerous studies that oil palm plantations have mainly negative effects on the region's biodiversity. However, our results also demonstrate the high conservation value of logged forests for Bornean stream‐dependent anurans. We conclude that palm plantations have a largely unused potential to promote regional anuran biodiversity.  相似文献   

6.
Windbreaks often form networks of forest habitats that improve connectivity and thus conserve biodiversity, but little is known of such effects in the tropics. We determined bird species richness and community composition in windbreaks composed of remnant native vegetation amongst tea plantations (natural windbreaks), and compared it with the surrounding primary forests. Fifty-one, ten-minute point counts were conducted in each habitat type over three days. Despite the limited sampling period, our bird inventories in both natural windbreaks and primary forests were nearly complete, as indicated by bootstrap true richness estimator. Bird species richness and abundance between primary forests and windbreaks were similar, however a difference in bird community composition was observed. Abundances of important functional groups such as frugivores and insectivores did not vary between habitat types but nectarivores were more abundant in windbreaks, potentially as a result of the use of windbreaks as traveling routes, foraging and nesting sites. This preliminary study suggests that natural windbreaks may be important habitats for the persistence of bird species in a production landscape. However, a better understanding of the required physical and compositional characteristics for windbreaks to sustain bird communities is needed for effective conservation management.  相似文献   

7.
In tropical regions, many studies have focused on how vegetation and ecosystem processes recover following the abandonment of anthropogenic activities, but less attention has been given to the recovery patterns of vertebrates. Here we conduct a meta‐analysis (n = 147 studies) of amphibian, reptile, bird and mammal recovery during tropical secondary forest succession (i.e. natural regeneration). For each taxonomic group, we compared changes in species richness and compositional similarity during natural secondary succession to reference forests (mature or old growth forest). In addition, we evaluated the response of forest specialists and the change in bird and mammal functional groups during natural secondary succession in the tropical moist forest biome. Overall, species richness of all groups reached levels of the reference forests during natural secondary succession, but this was not the case for species compositional similarity. The delay in recovery of forest specialists may be the reason for the delay in recovery of species compositional similarity. Overall, vertebrate recovery increased with successional stage, but other potential predictors of diversity recovery, such as, the geographical setting (amphibian and reptile species compositional similarity recovered more rapidly on islands), rainfall (mammal species richness and compositional similarity recovered faster in regions of low rainfall), and the landscape context (amphibian, reptile and mammal species compositional similarity recovered faster in regions with more forest patches) influenced vertebrate recovery. These results demonstrate the important role of secondary forests in providing habitat for many vertebrates, but the slow recovery of species compositional similarity, forest specialists and some functional groups (e.g. insectivorous birds) highlighted the challenge of secondary forest persistence, and strongly argues for the continued protection of old growth/mature forest as habitat for forest specialists and as sources for secondary forest sites.  相似文献   

8.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

9.
Vascular epiphytes represent a highly diverse element of tropical rain forests, but they depend strongly on the structure and taxonomic composition of their tree communities. For conservation planning, it is therefore critical to understand the effect of host tree characteristics on epiphyte species richness in natural and anthropogenically transformed vegetation. Our study compares the effect of human land‐use on epiphyte diversity based on 220 study plots in a lowland rain forest and an Andean cloud forest in western Ecuador. We evaluate the relevance of host tree size and taxonomic identity for epiphyte species richness in contiguous primary forests, forest fragments, isolated remnant trees (IRTs), and secondary forests. At both study sites, epiphyte diversity was highest in primary forests, and it was lowest on IRTs and in secondary forests. Epiphyte species numbers of forest fragments were significantly reduced compared with the contiguous primary forest at the lowland study site, but not in the cloud forest area. Host tree size was a core predictor among secondary forests, but it had less significance within other habitat types. Taxonomic identity of the host trees also explained up to 61 percent of the variation in epiphyte diversity, especially for IRTs. The structural and taxonomic composition of the tree community in anthropogenically transformed habitat types proved to be fundamental to epiphyte diversity. This highlights the importance of deliberate selection of tree species for reforestation in conservation programs and the possible negative effects of selective logging in primary forests. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

10.
Abstract The response of insects to monoculture plantations has mainly proceeded at the expense of natural forest areas, and is an outstanding and important issue in ecology and conservation biology, with pollination services declined around the world. In this study, species richness and distribution of hoverfly and wild bee communities were investigated in a changing tropical landscape in southern Yunnan, south‐west China by Malaise traps periodically from 2008 to 2009. Species were recorded from the traditional land use types (natural forest, grassland, shrubland and rice field fallows), and from recently established rubber plantations of different ages. Hoverflies (total 53 species) were most common in young successional stages of vegetation, including rice field fallow and shrubland. Species richness was highest in rice field fallows and lowest in forests and showed a highly significant relationship with the number of forb species and ground vegetation cover. In contrast, the highest richness of wild bees (total 44 species) was recorded from the natural forest sites, which showed a discrete bee community composition compared to the remaining habitat types. There was no significant relationship between the bee species richness and the environmental variables, including the numbers of different plant life forms, coverage of canopy and ground vegetation, successional age of vegetation and land use type. At the landscape scale, open land use systems, including young rubber plantations, are assumed to increase the species richness of hoverflies; however, this might decrease wild bee diversity. The present land use change by rubber cultivation can be expected to have negative impacts on the native wild bee communities.  相似文献   

11.
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7‐ to 8‐year‐old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50‐m plots in four former pasture sites in southern Costa Rica: plantation – trees planted throughout the plot; applied nucleation/islands – trees planted in patches of different sizes; and natural regeneration – no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource‐intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.  相似文献   

12.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

13.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

14.
Tropical secondary forest and agroforestry systems have been identified as important refuges for the local species diversity of birds and other animal groups, but little is known about the importance of these systems for terrestrial herbs. In particular, few studies report how the conversion from tropical forest to technified cacao plantation affects the species richness and the community structure of herbs. We conducted surveys in 43 cacao plantations along the border of the Lore Lindu National Park in Central Sulawesi, ranging from agroforests to technified cacao, categorizing the plantations as rustic cacao, planted shade cacao, and technified cacao. We recorded 91 herb species. Of the 74 species determined to species level, 21 were also found in natural forests, while 53 were recorded only in agricultural habitats. Araceae was the most forest‐dependent plant family while Asteraceae included the highest number of nonforest species. Overall, the presence of forest species was confined to moderately intensively managed rustic and planted shaded plantations. Distance from the forest, which has been identified as a crucial parameter for the diversity and composition of other taxa in cacao agroforests, only played a minimal role for herbs. Our study suggests that native forest herbs maybe more vulnerable to forest conversion than animal groups. The intensification of cacao plantation management increases the presence of weedy species to the detriment of native forest species.  相似文献   

15.
Peat swamp forest is an important refuge for biodiversity in Southeast Asia and is now becoming a target of exploitation. The scarcity of information on avifauna and ecology of birds in peat swamp forests prevents understanding of the effects of land use change on avifauna. In this study, we describe the bird assemblages in habitats with different land uses by comparing species richness, community composition, and feeding guild patterns in Bukit Batu, Indonesia. Bird assemblages in natural peat swamp forests (NPF), high-maintenance industrial acacia plantations (planted acacia forest, PAF), low-maintenance rubber plantations (jungle rubber forest, JRF), and village areas (VIL) were studied using a fixed-radius point-count method. Of the 95 species observed, 45, 20, 35, and 48 species were observed in NPF, PAF, JRF, and VIL, respectively. Estimated species richness was the highest in NPF, followed by VIL, JRF, and PAF. NPF had the highest species diversity and β-diversity, more endangered species, and a distinctive species composition characterized by fly-catching insectivores. The relative conservation value of PAF was notably low, particularly compared with JRF. The avifauna in VIL was characterized by more generalists that favor open spaces and therefore is not considered an important habitat for forest-dependent birds that are of conservation concern. Our results indicate that NPF has irreplaceable value for bird diversity conservation, but low-maintenance rubber plantations were home to several forest-dependent species and partially supported bird diversity, particularly compared with high-maintenance acacia plantations.  相似文献   

16.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

17.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

18.
Habitat edges are landscape structures that have a major influence on animal communities. Bird communities' response to habitat edges is influenced by the season and habitat characteristics but it is still poorly understood how communities respond to structural complex (i.e. natural) edges. Inter-seasonal changes in bird species diversity were quantified at a homogeneous, sharp interface between two habitats that host distinct and well-represented bird communities: a mature broad-leaved forest and a compact reed-bed area. Resident species diversity was found higher during winter, both in terms of species richness and evenness. The presence of the reed-bed nesting migrants during the summer season did not notably modify the seasonally reversed diversity pattern; the overall evenness was higher during the winter season while the overall species richness did not differ between the two seasons. Thus, contrary to the expected regional seasonal diversity pattern, the forest – reed-bed interface is, in winter, a local bird diversity hotspot. The possible causes and implications for conservation of this phenomenon are discussed.  相似文献   

19.
Clearance of tropical forest for agricultural purposes is generally assumed to seriously threaten the survival of forest species. In this study, we quantified the conservation value, for forest bird species, of three degraded habitat types in Peninsular Malaysia, namely rubber tree plantations, oil palm plantations, and open areas. We surveyed these degraded habitats using point counts to estimate their forest bird species richness and abundance. We assessed whether richness, abundance, and activities of different avian dietary groups (i.e. insectivores and frugivores) varied among the habitats. We identified the critical habitat elements that accounted for the distribution of forest avifauna in these degraded habitats. Our results showed that these habitats harboured a moderate fraction of forest avifauna (approximately 46–76 species) and their functions were complementary (i.e. rubber tree plantations for moving; open habitats for perching; shrubs in oil palm plantations for foraging). In terms of species richness and abundance, rubber tree plantations were more important than oil palm plantations and open habitats. The relatively high species richness of this agricultural landscape was partly due to the contiguity of our study areas with extensive forest areas. Forecasts of forest-species presence under various canopy cover scenarios suggest that leaving isolated trees among non-arboreal crops could greatly attract relatively tolerant species that require tree canopy. The conservation value of degraded habitats in agricultural landscapes seems to depend on factors such as the type of crops planted and distance to primary forest remnants.  相似文献   

20.
Human disturbance threatens and modifies forest ecosystems worldwide. Previous studies have investigated the effects of human impact on local bird communities in disturbed forests, but we still lack information on how bird species richness and ecological processes respond to different forest modifications present at a landscape scale. In a heterogeneous South African landscape, we chose six types of indigenous scarp forest, differing in the intensity of human disturbance: continuous natural forests and natural forest fragments in nature reserves, forest fragments in eucalyptus plantations, fragments in the agricultural matrix, forest gardens and secondary forests in game reserves. In 36 study sites, we investigated the bird community using point counts and observed the seed removal of birds at the native tree species Celtis africana. Species richness did not differ among the forest types, but abundance varied significantly with most birds observed in fragments in the agricultural matrix, forest gardens, and secondary forests. The higher bird abundance in these forests was mainly due to forest generalists, shrubland and open country species whereas forest specialists were rarely present. Changes in species composition were also confirmed by multivariate analysis which clearly separated bird communities by forest type. Frugivore abundance in C. africana was highest in natural forest fragments, fragments in the agricultural matrix, forest gardens and secondary forests. The same trend was found for the estimated total number of fruits removed per C. africana tree, though the differences among forest types were not significant. Consequently, modified forests seem to maintain important ecological functions as they provide food sources for generalist species which may, due to their mobility, enhance natural plant regeneration. However, we could show that protected forest habitats are important refugees for specialist species sensitive to human disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号