首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.

Background and aims

The Tehuacán-Cuitcatlán reserve is an area of unique plant biodiversity mostly in the form of xerophytes, with exceptionally high numbers of rare and endemic species. This endemism results partly from the characteristics of the climate of this area, with two distinct seasons: rainy and dry seasons. Although rhizosphere communities must be critical in the function of this ecosystem, understanding the structure of these communities is currently limited. This is the first molecular study of the microbial diversity present in the rhizosphere of Mamillaria carnea.

Methods

Total DNA was obtained from soil and rhizosphere samples at three locations in the Tehuacán Cuicatlán Reserve, during dry and rainy seasons. Temperature gradient gel electrophoresisis (TGGE) fingerprinting, 16S rRNA gene libraries and pyrosequencing were used to investigate bacterial diversity in the rhizosphere of Mammillaria carnea and changes in the microbial community between seasons.

Results

Deep sequencing data reveal a higher level of biodiversity in the dry season. Statistical analyses based on these data indicates that the composition of the bacterial community differed between both seasons affecting to members of the phyla Acidobacteria, Cyanobacteria, Gemmatimonadetes, Plantomycetes, Actinobacteria and Firmicutes. In addition, the depth of sequencing performed (>24,000 reads) enables detection of changes in the relative abundance of lower bacterial taxa (novel bacterial phylotypes) indicative of the increase of specific bacterial populations due to the season.

Conclusions

This study states the basis of the bacterial diversity in the rhizosphere of cacti in semi-arid environments and it is a sequence-based demonstration of community shifts in different seasons.  相似文献   

2.

Aims

Previous studies have shown that elephant grass is colonized by nitrogen-fixing bacterial species; however, these results were based on culture-dependent methods, an approach that introduces bias due to an incomplete assessment of the microbial community. In this study, we used culture-independent methods to survey the diversity of endophytes and plant-associated bacterial communities in five elephant grass genotypes used in bioenergy production.

Methods

The plants of five genotypes of elephant grass were harvested from the experimental area of Embrapa Agrobiologia and divided into stem and root tissues. Total DNA and RNA were extracted from plant tissues and the bacterial communities were analyzed by DGGE and clone library of the 16S rRNA and nifH genes at both the cDNA and DNA levels.

Results

Overall, the patterns based on DNA- and RNA-derived DGGE-profiles differed, especially within tissue samples. DNA-based DGGE indicated that both total bacterial and diazotrophic communities associated with roots (rhizoplane?+?endophytes) differed clearly from those obtained from stems (endophytes). These results were confirmed by the phylogenetic analyses of RNA-derived sequences of 16S rRNA (total bacteria; 586 sequences), but not for nifH (186). In fact, rarefaction analyses showed a higher diversity of diazotrophic organisms associated with stems than roots. Based on 16S rRNA sequences, the clone libraries were dominated by sequences affiliated to members of Leptotrix (12.8 %) followed by Burkholderia (9 %) and Bradyrhizobium (6.5 %), while most of the nifH clones were closely related to the genus Bradyrhizobium (26 %).

Conclusions

Our results revealed an unexpectedly large diversity of metabolically active bacteria, providing new insights into the bacterial species predominantly found in association with elephant grass. Furthermore, these results can be very useful for the development of new strategies for selection of potential bacteria that effectively contribute to biological nitrogen fixation and enhance the sustainable production of elephant grass as bioenergy crop.  相似文献   

3.

Aims

This study aimed at assessing whether patch type (i.e., under-shrub soil patch and inter-shrub soil patch) has an effect on soil microbes and how different shrub species altered the soil microbes through understanding soil microbial activity, biomass, and community structure.

Methods

We characterized the soil microbes in under-shrub and inter-shrub soil patches in three shrublands (Artemisia ordosica, Salix psammophila, and Caragana microphylla), respectively, in the Mu Us Desert, China, using microbial activity indicators, chloroform fumigation-extraction analysis, and high-throughput 16S rRNA gene sequencing.

Results

Members of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes, and Gemmatimonadetes were dominant. Inter-shrub soil patch differed from under-shrub soil patch in soil bacterial composition, microbial enzyme activity, and biomass, but not in diversity. Soil collected in A. ordosica shrubland exhibited the highest microbial enzyme activity, biomass, and diversity. Shrub species had significant effects on community structure, primarily the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes.

Conclusions

The results indicated that both shrub species and patch type had effects on soil microbial communities. In shrub-dominated desert ecosystems, spatial heterogeneity of soil nutrients and moisture might not be the main factors underlying variations in bacterial diversity. The different compositions of microbial communities in various shrublands provide a foundation for further research into the mechanisms of soil organic carbon accumulation.
  相似文献   

4.

Background and aims

Plant breeding activities shape the rhizosphere microbiome but less is known about the relationship of both with the seed microbiome. We analyzed the composition of bacterial communities of seeds and rhizospheres of Styrian oil pumpkin genotypes in comparison to bulk soil to elucidate specific microbial signatures to support a concept involving plant-microbe interactions in breeding strategies.

Methods

The seed and rhizosphere microbiomes of 14 genotypes of oilseed pumpkin and relatives were analyzed using a 16S rRNA gene amplicon sequencing approach, which was assessed by bioinformatics and statistical methods.

Results

All analyzed microhabitats were characterized by diverse bacterial communities, but the relative proportions of phyla and the overall diversity was different. Seed microbiomes were characterized by the lowest diversity and dominant members of Enterobacteriaceae including potential pathogens (Erwinia, Pectobacterium). Potential plant-beneficial bacteria like Lysobacter, Paenibacillus and Lactococcus contributed to the microbial communities in significant abundances. Interestingly, strong genotype-specific microbiomes were detected for seeds but not for the rhizospheres.

Conclusions

Our study indicates a strong impact of the Cucurbita pepo genotype on the composition of the seed microbiome. This should be considered in breeding of new cultivars that are more capable of exploiting beneficial indigenous microbial communities.
  相似文献   

5.
In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.  相似文献   

6.

Aims

The goal of this study was to investigate the structure and functional potential of microbial communities associated with healthy and diseased tomato rhizospheres.

Methods

Composition changes in the bacterial communities inhabiting the rhizospheric soil and roots of tomato plants were detected using 454 pyrosequencing. Microbial functional diversity was investigated with BIOLOG technology.

Results

There were significant shifts in the microbial composition of diseased samples compared with healthy samples, which had the highest bacterial diversity. The predominant phylum in both diseased and healthy samples was Proteobacteria, which accounted for 35.7–97.4 % of species. The class Gammaproteobacteria was more abundant in healthy than in diseased samples, while the Alphaproteobacteria and Betaproteobacteria were more abundant in diseased samples. The proportions of pathogenic Ralstonia solanacearum and Actinobacteria species were also elevated in diseased samples. The proportions of the various bacterial populations showed a similar trend both in rhizosphere soil and plant roots in diseased versus disease-free samples, indicating that pathogen infection altered the composition of bacterial communities in both plant and soil samples. In terms of microbial activity, functional diversity was suppressed in diseased soil samples. Soil enzyme activity, including urease, alkaline phosphatase and catalase activity, also declined.

Conclusions

This is the first report that provides evidence that R. solanacearum infection elicits shifts in the composition and functional potential of microbial communities in a continuous-cropping tomato operation.  相似文献   

7.
In this study the bacterial diversity of thermophilic microbial mats (40 to 65°C) in three alkaline hot springs of the Baikal Rift Zone (BRZ) was determined through pyrosequencing of 16S rRNA gene libraries. Significant diversity of bacterial species was found in the biomats of the hot springs with total number of detected phylotypes of 607. The highest share of the microbial community was represented by the phyla Chloroflexi (Seya Spring, 76.4%), Deinococcus-Thermus (Alla Spring, 45.1%), Nitrospira (Alla Spring, 36.1%), Cyanobacteria (Tsenkher Spring, 33.1%), and Proteobacteria (Tsenkher Spring, 22.6%), but their ratio varied significantly in different springs. A comparison of the biodiversity and composition of microbial communities between hot springs showed a decrease in biodiversity with increasing temperature. A large number of sequences showed a low degree of similarity with cultivated representatives in public databases. Microbial communities showed intensive rates of production and destruction of organic compounds, as revealed by the quantitative assessment of their functional activity.  相似文献   

8.

Background and aims

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is accelerated in the presence of plants, due to the stimulation of rhizosphere microbes by plant exudates (nonspecific enhancement). However, plants may also recruit specific microbial groups in response to PAH stress (specific enhancement). In this study, plant effects on the development of rhizosphere microbial communities in heterogeneously contaminated soils were assessed for three grasses (ryegrass, red fescue and Yorkshire fog) and four legumes (white clover, chickpea, subterranean clover and red lentil).

Methods

Plants were cultivated using a split-root model with their roots divided between two independent pots containing either uncontaminated soil or PAH-contaminated soil (pyrene or phenanthrene). Microbial community development in the two halves of the rhizosphere was assessed by T-RFLP (bacterial and fungal community) or DGGE (bacterial community), and by 16S rRNA gene tag-pyrosequencing.

Results

In legume rhizospheres, the microbial community structure in the uncontaminated part of the split-root model was significantly influenced by the presence of PAH-contamination in the other part of the root system (indirect effect), but this effect was not seen for grasses. In the contaminated rhizospheres, Verrucomicrobia and Actinobacteria showed increased populations, and there was a dramatic increase in Denitratisoma numbers, suggesting that this genus may be important in rhizoremediation processes.

Conclusion

Our results show that Trifolium and other legumes respond to PAH-contamination stress in a systemic manner, to influence the microbial diversity in their rhizospheres.  相似文献   

9.

Background

Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea.

Methodology/Principal Findings

Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea.

Conclusions

This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.  相似文献   

10.

Background

A modest number of prospective studies of the composition of the intestinal microbiota and eczema in early life have yielded conflicting results.

Objective

To examine the relationship between the bacterial diversity of the gut and the development of eczema in early life by methods other than stool culture.

Methods

Fecal samples were collected from 21 infants at 1 and 4 months of life. Nine infants were diagnosed with eczema by the age of 6 months (cases) and 12 infants were not (controls). After conducting denaturating gradient gel electrophoresis (DGGE) of stool samples, we compared the microbial diversity of cases and controls using the number of electrophoretic bands and the Shannon index of diversity (H') as indicators.

Results

Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean H' for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean H' for controls = 0.92 vs. 0.59 for cases, P = 0.02). The increase in diversity from 1 to 4 months of age was significant in controls (P = 0.04) but not in children who developed eczema by 6 months of age (P = 0.32).

Conclusion

Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.  相似文献   

11.

Background

Sundarbans is the largest chunk of mangrove forest and only tiger mangrove land in the world. Compared to the rich species diversity and uniqueness, very few studies have so far been conducted here, mainly due to its inaccessibility. This study explores water quality, density of biomass, species diversity, phytoplankton abundance and bacterial population of a tidal creek in Sunderban estuary during the post and pre monsoon period of 2008-09.

Results

Phytoplankton community was observed to be dominated by diatoms (Biacillariophyceae) followed by Pyrrophyceae (Dinoflagellates) and Chlorophyceae. A total of 46 taxa belonging to 6 groups were recorded. Other algal groups were Cyanophyceae, Euglenophyceae and Chrysophyceae. Species diversity was highest in summer (March) and lowest in winter season (November) in all the sample stations indicating its close correlation with ambient temperature. Species evenness was fairly high in all five stations throughout the study period. Present study indicated that dissolved oxygen, nutrients and turbidity are the limiting factors for the phytoplankton biomass. The estuary was in eutrophic condition (Chlorophyll-a ≥10 μg/L) in winter. During the month of May phytoplankton biomass declined and at high salinity level (21.2PSU) new phytoplankton species take over, which are definitely better resilient to the high saline environment. Bio-indicator species like Polykrikos schwartzil, Dinophysis norvegica and Prorocentrum concavum points to moderately polluted water quality of the estuary.

Conclusion

Eutrophication as well as presence of toxic Dinoflagellates and Cyanophyceae in the tidal creek of Sundarban estuary definitely revealed the deteriorated status of the water quality. The structure and function of the mangrove food web is unique, driven by both marine and terrestrial components. But little attention has been paid so far to the adaptive responses of mangrove biota to the various disturbances, and now our work unfolds the fact that marine status of Sundarban estuary is highly threatened which in turn will affect the ecology of the mangrove. This study indicates that ecosystem dynamics of the world heritage site Sundarban may facilitate bioinvasion putting a question mark on the sustainability of mangroves.  相似文献   

12.

Introduction

Bacteria and/or their antigens have been implicated in the pathogenesis of reactive arthritis (ReA). Several studies have reported the presence of bacterial antigens and nucleic acids of bacteria other than those specified by diagnostic criteria for ReA in joint specimens from patients with ReA and various arthritides. The present study was conducted to detect any bacterial DNA and identify bacterial species that are present in the synovial tissue of Tunisian patients with reactive arthritis and undifferentiated arthritis (UA) using PCR, cloning and sequencing.

Methods

We examined synovial tissue samples from 28 patients: six patients with ReA and nine with UA, and a control group consisting of seven patients with rheumatoid arthritis and six with osteoarthritis (OA). Using broad-range bacterial PCR producing a 1,400-base-pair fragment from the 16S rRNA gene, at least 24 clones were sequenced for each synovial tissue sample. To identify the corresponding bacteria, DNA sequences were compared with sequences from the EMBL (European Molecular Biology Laboratory) database.

Results

Bacterial DNA was detected in 75% of the 28 synovial tissue samples. DNA from 68 various bacterial species were found in ReA and UA samples, whereas DNA from 12 bacteria were detected in control group samples. Most of the bacterial DNAs detected were from skin or intestinal bacteria. DNA from bacteria known to trigger ReA, such as Shigella flexneri and Shigella sonnei, were detected in ReA and UA samples of synovial tissue and not in control samples. DNA from various bacterial species detected in this study have not previously been found in synovial samples.

Conclusion

This study is the first to use broad-range PCR targeting the full 16S rRNA gene for detection of bacterial DNA in synovial tissue. We detected DNA from a wide spectrum of bacterial species, including those known to be involved in ReA and others not previously associated with ReA or related arthritis. The pathogenic significance of some of these intrasynovial bacterial DNAs remains unclear.  相似文献   

13.

Background and aims

The avocado-producing area of southern Spain includes conventional orchards and organic orchards that use different organic amendments. To gain insight into the effects of these amendments, physicochemical properties and microbial communities of the soil were analysed in a representative set of commercial and experimental orchards.

Methods

The population size of several groups of culturable microorganisms was determined by plating on different selective media. Bacterial community structure was studied by denaturing gradient gel electrophoresis (DGGE)

Results

Commercial composts showed the largest effects, especially the animal compost, enhancing the population sizes of some microbial groups and affecting bacterial community structure in superficial and deep soil layers. Moreover, animal and vegetal compost, manure and blood meal addition are related to high bacterial diversity in the superficial soil layer.

Conclusions

All of the organic amendments used in this study affect soil properties in one or more of the characteristics that were analysed. Culturable microbial population data revealed the most evident effects of some of the organic treatments. However, molecular analysis of soil bacterial communities by DGGE allowed the detection of the influence of all of the analysed amendments on bacterial community composition. This effect was stronger in the superficial layer of the avocado soil.  相似文献   

14.

Background

The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied.

Results

We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe.

Conclusions

Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.  相似文献   

15.
Bacterial diversity of the Soldhar hot spring, located in the Chamoli district of Uttarakhand, India, was investigated using a clone library, denaturing gradient gel electrophoresis (DGGE) and functional genes. Physicochemical analysis of sediment samples indicated an oligotrophic environment with very low sulfur content. Based on the 16S rRNA gene studies Proteobacteria was the most predominant group in all the three approaches. Other dominant phyla were Deinococcus-Thermus and Aquificae. Pyrobaculum was the only archaeal genus detected by DGGE. In the functional gene analysis, the nifH library showed a single operational taxonomic unit (OTU) related to the genus Paenibacillus whereas the aoxB library showed three OTUs related to Acidovorax, Aminobacter and Agrobacterium. Our results demonstrate for the first time both the bacterial and archaeal diversity in the Soldhar hot spring by culture-independent techniques, thereby providing important information that will increase our understanding of the microbial ecology of the Soldhar hot spring.  相似文献   

16.

Background

Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development.

Results

Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.

Conclusion

Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization.  相似文献   

17.

Background and aims

The types of natural forests have long been suggested to shape below-ground microbial communities in forest ecosystem. However, detailed information on the impressionable bacterial groups and the potential mechanisms of these influences are still missing. The present study aims to deepen the current understanding on the soil microbial communities under four typical forest types in Northeast Asia, and to reveal the environmental factors driving the abundance, diversity and composition of soil bacterial communities.

Methods

Four forest types from Changbai Nature Reserve, representing mixed conifer-broadleaf forest and its natural secondary forest, evergreen coniferous forest, and deciduous coniferous forest were selected for this study. Namely, Broadleaf-Korean pine mixed forest (BLKP), secondary Poplar-Birch forest (PB), Spruce-Fir forest (SF), and Larch forest (LA), respectively. Soil bacterial community was analyzed using bar-coded pyrosequencing. Nonmetric multidimensional scaling (NMDS) was used to illustrate the clustering of different samples based on both Bray-Curtis distances and UniFrac distances. The relationship between environmental variables and the overall community structure was analyzed using the Mantel test.

Results

The two mixed conifer-broadleaf forests (BLKP and PB) displayed higher total soil nutrients (organic carbon, nitrogen, and phosphorus) and soil pH, but a lower C/N ratio as compared to the two coniferous forests (SF and LA). The mixed conifer-broadleaf forests had higher alpha-diversity and had distinct bacterial communities from the coniferous forests. Soil texture and pH were found as the principle factors for shaping soil bacterial diversity and community composition. The two mixed conifer-broadleaf forests were associated with higher proportion of Acidobacteria, Verrucomicrobia, Bacteroidetes, and Chloroflexi. While the SF and LA forests were dominated by Proteobacteria and Gemmatimonadetes.

Conclusions

Different natural forest type each selects for distinct microbial communities beneath them, with mixed conifer-broadleaf forests being associated with the low-activity bacterial groups, and the coniferous forests being dominated by the so-called high-activity members. The differentiation of soil bacterial communities in natural forests are presumably mediated by the differentiation in terms of soil properties, and could be partially explained by the copiotroph/oligotroph ecological classification model and non-random co-occurrence patterns.  相似文献   

18.

Background

Determining bacterial abundance variation is the first step in understanding bacterial similarity between individuals. Categorization of bacterial communities into groups or community classes is the subsequent step in describing microbial distribution based on abundance patterns. Here, we present an analysis of the groupings of bacterial communities in stool, nasal, skin, vaginal and oral habitats in a healthy cohort of 236 subjects from the Human Microbiome Project.

Results

We identify distinct community group patterns in the anterior nares, four skin sites, and vagina at the genus level. We also confirm three enterotypes previously identified in stools. We identify two clusters with low silhouette values in most oral sites, in which bacterial communities are more homogeneous. Subjects sharing a community class in one habitat do not necessarily share a community class in another, except in the three vaginal sites and the symmetric habitats of the left and right retroauricular creases. Demographic factors, including gender, age, and ethnicity, significantly influence community composition in several habitats. Community classes in the vagina, retroauricular crease and stool are stable over approximately 200 days.

Conclusion

The community composition, association of demographic factors with community classes, and demonstration of community stability deepen our understanding of the variability and dynamics of human microbiomes. This also has significant implications for experimental designs that seek microbial correlations with clinical phenotypes.  相似文献   

19.

Aims

Sediment retention by plant barriers initiates common strategies to conserve soil fertility or restore degraded terrains, including gullied ones. Differences in species performance for sediment retention have been studied but little is known about plant performance in retention when upscaling to plurispecific barriers. We investigated the role of morphological diversity of plant barriers in sediment retention in the context of eroded marly gullies.

Methods

Fifteen plant barriers, composed of combinations of four morphologically contrasting species (grass, shrub, dwarf-shrub and juvenile tree) were tested for their sediment retention potential in an innovative life-size artificial concentrated runoff experiment. We studied the net effect of biodiversity and the role of morphological traits on sediment retention.

Results

We found that grass barriers performed best to retain sediment and morphological diversity significantly impaired sediment retention. This negative effect may be due to runoff concentrating in the least flow-resistant areas (shrubs or trees), resulting in a localized increase in flow velocity and thus an overall decrease in sediment deposition.

Conclusion

To initiate gully restoration by increasing sediment retention in their bed, morphologically homogeneous plant barriers should be favored. Plant diversity, useful for mid- and long-term restoration goals, should be considered later in the process.  相似文献   

20.

Objectives

To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions.

Results

An anaerobic–aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors.

Conclusions

The anaerobic–aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号