首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that several begomoviruses are associated with tomato leaf curl disease in Java, Indonesia. Tomato plants with leaf curl symptoms were collected from Bandung (west Java), Purwokerto (central Java), Magelang (central Java) and Malang (east Java) of Indonesia, the major tomato‐growing areas of the country. Viruses were detected using the polymerase chain reaction (PCR), with universal primers for the genus Begomovirus. PCR‐amplified fragments were cloned and sequenced. Based on sequence comparisons and phylogenetic analyses, the viruses were divided into three groups. With respect to amino acid (aa) identities of the N‐terminal halves of the coat proteins compared in this study, group I was most closely related to Ageratum yellow vein virus (AYVV) (97%), Ageratum yellow vein China virus‐[Hn2] (AYVCNV‐[Hn2]) (96%) and Ageratum yellow vein virus‐[Taiwan] (AYVV‐[Tai]) (95%), and ageratum‐infecting begomovirus from Java (99%). Group II had high sequence identity with a tentative species of tomato leaf curl Java virus (ToLCJAV) (96% aa) for the CP. Group III was most closely related to a proposed species of Pepper yellow leaf curl Indonesia virus (PepYLCIDV) (90% aa identity) by its partial CP sequence.  相似文献   

2.
J. H. Dong    Z. K. Zhang    M. Ding    Q. Fang    H. Zhou 《Journal of Phytopathology》2008,156(4):193-195
A Begomovirus isolate JH1 was obtained from Crassocephalum crepidioides showing yellow vein symptoms in Jinghong of Yunnan province, China. The complete sequence of Begomovirus DNA‐A‐like molecule of JH1 was determined to be 2745 nucleotides long. When compared with other begomoviruses, JH1 DNA‐A has the highest nucleotide sequence identity (86.4%) with that of Tobacco curly shoot virus. Comparisons of individual encoded proteins with other begomoviruses show that different parts of JH1 DNA‐A have different ancestors. The molecular data show that JH1 is a distinct Begomovirus species, for which the name Crassocephalum yellow vein virus is proposed.  相似文献   

3.
Virus isolate G35 was obtained from Euphorbia pulcherrima showing leaf curl and vein thickening symptoms in Tianyang, Guangxi Province, China. The virus was transmitted by whiteflies to Nicotiana tabacum, Lycopersicon esculentum, Datura stramonium and E. pulcherrima. DNA‐A contains 2746 nucleotides, with two open reading frames (ORFs) in the virion‐sense DNA and four ORFs in the complementary‐sense DNA. When compared with the DNA‐A sequence of other begomoviruses, the total DNA‐A of isolate G35 was most closely related to that of Ageratum enation virus (79.9% sequence identity). However, the deduced coat protein of G35 is most like that of Pepper leaf curl virus from Bangladesh (94.9% amino acid sequence identity), and the AC1 of G35 is most like that of Cotton leaf curl Multan virus‐Okra (87.2% amino acid sequence identity). The molecular data showed that G35 is a distinct Begomovirus species, for which the name Euphorbia leaf curl virus (ELCV) is proposed.  相似文献   

4.
R. Singh    S. K. Raj    V. Prasad 《Journal of Phytopathology》2008,156(4):222-228
A Begomovirus causing yellow vein mosaic disease of pumpkin (Cucurbita maxima L.) was characterized at molecular level by cloning and sequence analysis of its complete DNA‐A genome. The DNA‐A of the isolate contains 2758 nucleotides which encode six open reading frames (ORFs): AV1 and AV2 in the virion‐sense and AC1, AC2, AC3 and AC4 in the complementary‐sense. Based on the highest (96%) sequence identities and close phylogenetic relationships with Squash leaf curl China virus species, the Begomovirus was identified as strain of Squash leaf curl China virus. The presence of DNA‐B genome of the virus strain was also detected by dot blot hybridization test using DNA‐B specific probe.  相似文献   

5.
Two samples (YC7, YC27) of Nicotiana tabacum showing leaf curling, vein swelling and enations on undersides of leaves were collected in the Fujian Province of China in 2007. Virus isolates YC7‐1 and YC7‐2 (associated with betasatellite, YC7‐2β) were detected in both samples. The complete DNA‐A sequence of YC7‐1 (FJ869907) comprised 2741 nucleotides (nt). The complete DNA‐A (FJ869908) and betasatellite (FJ869909) sequence of YC7‐2 consisted of 2754 and 1344 nt, respectively. YC7‐1 had the highest nucleotide sequence identity (97.3%) with Papaya leaf curl Guangdong virus (PaLCuGuV‐[CN:Gd2:02], AJ558122). YC7‐2 had the highest sequence identity (90.1%) with Ageratum yellow vein virus (AYVV‐TW[TW:Tai:99], AF307861) and its betasatellite (96.5%) with Ageratum yellow vein betasatellite (AYVB‐[TW:CHu:02], AJ542495). These indicate that YC7‐1 and YC7‐2 are isolates of PaLCuGuV and AYVV, respectively. Symptoms including leaf curling, vein swelling and enations on undersides of leaves were observed in N. tabacum and N. glutinosa when infected by whiteflies with sample YC7 as the viral source under greenhouse conditions. PCR results showed that these infected plants contained both YC7‐1 and YC7‐2/YC7‐2β. To our knowledge, this is the first report of PaLCuGuV and AYVV/AYVB co‐infecting N. tabacum in China.  相似文献   

6.
Yellow mosaic disease is the major limitation in the production of grain legumes in India. This disease is caused by bipartite begomovirus, Mungbean yellow mosaic virus. In addition to the bipartite genomic components, the yellow mosaic disease affected urdbean plants which contain satellite like DNA-1 component called as alphasatellites. The present study has been attempted to characterise the alphasatellites associated with Mungbean yellow mosaic virus. Nucleotide sequence analysis of alphasatellites showed 98% identity with Vernonia yellow vein Fijian alphasatellite, VYVFA (JF733780). Since the sequence identity is more than 98%, the threshold value for demarcation of alphasatellites species, the alphasatellites of the present study are named as Vernonia yellow vein Fijian alphasatellite. Comparison with other, alphasatellites shared 51–55% identity with alphasatellites associated with monopartite begomovirus and it shared only 41–42% identity with an unusual alphasatellites, DNA-2. This is the first report on characterisation of alphasatellites associated with Mungbean yellow mosaic virus.  相似文献   

7.
Begomoviruses cause a number of serious diseases of cultivated crops and are considered as the major constraint for the cultivation of several crops all over the world. During a survey in the years 2007 and 2008, the typical symptoms of Begomovirus (yellow mosaic and yellow vein) were observed on six cucurbitaceous crops, viz. bitter gourd (Momordica charantia L.), pointed gourd (Trichosanthes dioica), pumpkin (Cucurbita pepo), pumpkin (Cucurbita maxima), sponge gourd (Luffa cylindrica) and ridged gourd (Luffa acutangula) being cultivated in northern India. Begomovirus infection was suspected due to significant infestation of whiteflies (Bemisia tabaci, the known vector of Begomoviruses) on these species. The presence of Begomovirus was detected from the total DNA extracted from six infected leaf samples of these species by polymerase chain reaction using the specific primers of a well-characterised Begomovirus. The ~800 bp amplicons of these isolates were cloned, sequenced and the data obtained were compared with each other and with sequence database available in GenBank for best sequence identities and phylogenetic relationships. Based on highest 97–99% sequence identities and closest phylogenetic relationships, four representative Begomovirus species were identified as Ageratum enation virus (from T. dioica), Squash leaf curl China virus (from C. maxima), Tomato leaf curl New Delhi virus (from M. charantia, L. cylindrica and L. acutangula) and Tomato leaf curl Palampur virus (from C. pepo). These results suggested the existence of a high genetic diversity among Begomoviruses infecting cucurbitaceous crops.  相似文献   

8.
From Synedrella nodiflora plants with leaf curling, vein swelling and enation symptoms on Samal Island, the Philippines, a begomoviral DNA‐A and its associated alphasatellite molecule were cloned and sequenced. The begomovirus was identified as an isolate of Ageratum yellow vein China virus (AYVCNV) with 91% nucleotide sequence identity to AYVCNV‐[P157] (EU487045), while the alphasatellite molecule was most closely related to tobacco curly shoot alphasatellite‐Y99 (TbCSA‐Y99, AJ579347) with 74.5% nucleotide sequence identity. The satellite molecule has the typical features of alphasatellites, with a single gene in the virion sense, an A‐rich region and a 33‐bp predicted stem‐loop structure. According to the proposed species demarcation threshold of alphasatellites (83% nucleotide sequence identity), the alphasatellite molecule represents a new species, herein named ‘Ageratum yellow vein China alphasatellite’ ( KF785752 ).  相似文献   

9.
Begomoviruses (whitefly‐transmitted, single‐stranded DNA plant viruses) are among the most damaging pathogens causing epidemics in economically important crops worldwide. Besides cultivated plants, many weed and wild hosts act as virus reservoirs where recombination may occur, resulting in new species. The aim of this study was to further characterise the diversity of begomoviruses infecting two major weed genera, Sida and Leonurus. Total DNA was extracted from samples collected in the states of Rio Grande do Sul, Paraná and Mato Grosso do Sul during the years 2009–2011. Viral genomes were enriched by rolling circle amplification (RCA), linearised into unit length genomes using various restriction enzymes, cloned and sequenced. A total of 78 clones were obtained: 37 clones from Sida spp. plants and 41 clones from Leonurus sibiricus plants. Sequence analysis indicated the presence of six bipartite begomovirus species and two alphasatellites. In Sida spp. plants we found Sida micrantha mosaic virus (SiMMV), Euphorbia yellow mosaic virus (EuYMV), and three isolates that represent new species, for which the following names are proposed: Sida chlorotic mottle virus (SiCMoV), Sida bright yellow mosaic virus (SiBYMV) and Sida golden yellow spot virus (SiGYSV), an Old World‐like begomovirus. L. sibiricus plants had a lower diversity of begomoviruses compared to Sida spp., with only Tomato yellow spot virus (ToYSV) and EuYMV (for the first time detected infecting plants of the genus Leonurus) detected. Two satellite DNA molecules were found: Euphorbia yellow mosaic alphasatellite, for the first time detected infecting plants of the genus Sida, and a new alphasatellite associated with ToYSV in L. sibiricus. These results constitute further evidence of the high species diversity of begomoviruses in non‐cultivated hosts, particularly Sida spp.  相似文献   

10.
During 2011, leaf crumpling, yellowing and stunting were observed on soya bean (Glycine max) in Himachal Pradesh, India. PCR‐based detection confirmed the presence of a begomovirus. The viral genome was amplified by rolling circle amplification, cloned and sequenced. The complete nucleotide sequence of DNA‐A showed highest nucleotide identity to an isolate of Ageratum enation virus infecting a weed Ageratum conyzoides. In addition, a DNA molecule was found which shared 95% nucleotide identity with an alphasatellite infecting ageratum. Neither beta satellite nor DNA‐B was detected in the infected samples.  相似文献   

11.
Yellow mosaic disease (YMD) is one of the most important diseases affecting different leguminous crops and causes significant yield losses in Indian sub‐continent. Eight different bipartite begomovirus species are known to cause YMD in more than 10 leguminous crops. These species are collectively known as legume yellow mosaic viruses (LYMVs), and their full genomes have been characterised except for Dolichos yellow mosaic virus (DoYMV). In this study, full genome of DoYMV isolate (KJ481204 and KJ481205) infecting dolichos has been characterised. The DNA‐A of DoYMV consists of 2761 nucleotides and DNA‐B of 2733 nucleotides with a genome organisation typical of Old World bipartite begomoviruses. Nucleotide identity of DNA‐B (KJ481205) of DoYMV with DNA‐B of other legumoviruses was 57.5–61.0%. Both components contain a nonanucleotide and conserved inverted repeat sequences with the potential to form a stem‐loop. Nucleotide identity of common region of DoYMV was 90.3%, above the threshold nucleotide identity (>85%) for considering a DNA‐B molecule as cognate of DNA‐A of a begomovirus. Four recombination events in DNA‐A and two in DNA‐B of DoYMV isolate were detected. Mungbean yellow mosaic virus, Rhynchosia yellow mosaic virus and Horsegram yellow mosaic virus were identified as probable parents.  相似文献   

12.
The complete genome of a novel bipartite begomovirus (genus Begomovirus, family Geminiviridae) was cloned from a severely diseased yellow Peruvian chili pepper (Capsicum baccatum cv. Pendulum) plant collected in the department of La Libertad, Northern Peru and full‐length sequenced. The two genomic components share a common region of 156 nucleotides with a 100% sequence identity. Analysis of the genome organisation and phylogenetic comparisons revealed that the virus is a typical New World begomovirus. The closest related begomovirus, an isolate of Tomato yellow vein streak virus (ToYVSV), shared only 76.8% nucleotide sequence identity for the DNA‐A component. Therefore, following species demarcation criteria of the International Committee on Taxonomy of Viruses, this virus isolate belongs to a new begomovirus species for which the name pepper leafroll virus (PepLRV) is proposed. Pepper plants infected with the cloned PepLRV isolate developed leaf roll symptoms similar to those observed in field‐infected plants suggesting this virus as the causal agent of the disease syndrome observed in the field. Widespread occurrence of PepLRV throughout Peru was demonstrated, infecting plants of diverse cultivated species such as tomato, pepper, common and pallar beans, and of the weed species Nicandra physaloides. Low genetic diversity was observed among PepLRV isolates present in this country with no evident geographical or temporal structure of the population, typical of a recent founder effect. This is the first report of a begomovirus infecting pepper and bean crops in Peru.  相似文献   

13.
Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. Taxonomy: The tomato yellow leaf curl virus‐like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full‐length DNA‐A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. Host range: The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petunia×hybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. Disease symptoms: Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance.  相似文献   

14.
The complete nucleotide sequence of infectious cloned DNA components (A and B) of the causal agent of squash leaf curl disease in the Philippines was determined. DNA‐A and DNA‐B comprise 2739 and 2705 nucleotides, respectively; the common region is 174 bases in length. Five ORFs were found in DNA‐A and two in DNA‐B. Partial dimeric clones containing DNA‐A and DNA‐B, constructed in a binary vector and transformed into Agrobacterium tumefaciens, induced systemic infection in agro‐inoculated pumpkin plants (Cucurbita moschata). The total DNA‐A sequence was most closely related to that of Squash leaf curl China virus (SLCCNV) (88% identity), although the existence of B component of SLCCNV has not been reported. The deduced coat protein was like that of SLCCNV (98% amino acid sequence identity) and the Philippines virus has low sequence identity to Squash leaf curl virus (SLCV) and Squash mild leaf curl virus (SMLCV) (63 and 64% total nucleotide sequence identities, respectively). From these results, we propose that the Philippines virus be designated Squash leaf curl China virus‐[Philippines] (SLCCNV‐[PH]).  相似文献   

15.
The complete nucleotide sequence of an Iranian isolate of Barley yellow striate mosaic virus (BYSMV) L gene comprising 6171 nucleotides was determined using the random polymerase chain reaction followed by filling of gaps by the use of specific primers. The deduced L protein sequence of BYSMV showed similarities with the L proteins of other plant rhabdoviruses and contained polymerase module motifs characteristic of RNA‐dependent RNA polymerases of negative‐strand RNA viruses. Pairwise and multiple alignments and phylogenetic analysis of BYSMV L protein revealed that it was more closely related to cytorhabdoviruses. These results revealed that, on the basis of polymerase gene, the Iranian isolate of BYSMV and Northern cereal mosaic virus (NCMV) appeared to be the most closely related plant rhabdoviruses sequenced to date. Interestingly, the amino acid sequence identity of BYSMV/NCMV (61.3%), shared more than twice the amino acid sequence identity compared with the next two most similar cytorabdoviruses, Lettuce necrotic yellows virus (28.8%) and Lettuce yellow mottle virus (28.2%). In this paper, we discuss the similarities and differences of BYSMV with other rhabdoviruses which support the classification of BYSMV as a distinct Cytorhabdovirus. This is the first report of BYSMV genome sequences.  相似文献   

16.
Hibiscus leaf curl disease (HLCuD) occurs widely in India. Infected hibiscus plants show vein thickening, upward curling of leaves and enations on the abaxial leaf surface, reduction in leaf size and stunting. The commonly‐occurring weeds (Ageratum conyzoides, Croton bonplandianum and Euphorbia geniculata), Nicotiana benthamiana, Nicotiana glutinosa and Nicotiana tabacum (var. Samsun, Xanthi), cotton and tomato were shown to be susceptible to HLCuD. One of the four species of hibiscus (Hibiscus rosa‐sinensis) and 75 of the 101 commercial hybrids/varieties grown in the Bangalore area of southern India were also susceptible. Two virus isolates associated with HLCuD from Bangalore, South India (Ban), and Bhubaneswar, North India (Bhu), were detected serologically and by PCR‐mediated amplification of virus genomes. The isolates were characterised by sequencing a fragment of DNA‐A component (1288 nucleotides) and an associated satellite DNA molecule of 682 nucleotides. Phylogenetic analyses of these DNA‐A sequences clustered them with Old World cotton‐infecting begomoviruses and closest to Cotton leaf curl Multan virus (CLCuMV) at 95–97% DNA‐A nucleotide identities. The 682‐nucleotide satellite DNA molecules associated with the HLCuD samples Ban and Bhu shared 96.9% sequence identity with each other and maximum identity (93.1–93.9% over positions 158–682) with ~1350‐nucleotide DNA‐β satellite molecules associated with cotton leaf curl disease in Pakistan and India (accession nos AJ298903, AJ316038). HLCuD in India, therefore, appears to be associated with strains of CLCuMV, a cotton‐infecting begomovirus from Pakistan, which is transmitted in a persistent manner by Bemisia tabaci.  相似文献   

17.
Incidence of Viruses Infecting Cucurbits in Cyprus   总被引:1,自引:0,他引:1  
  相似文献   

18.
Z. F. He    M. J. Mao    H. Yu    X. M. Wang    H. P. Li 《Journal of Phytopathology》2008,156(7-8):496-498
In 2005, Eclipta prostrata plants exhibiting yellow vein symptoms were observed in Guangzhou, Guangdong province, China. A virus isolate G8 was cloned from a symptomatic plant. The complete nucleotide sequence of G8 DNA-A was determined to be 2745 nucleotides, which had typical characteristics of Begomovirus genome organization. The comparison of complete nucleotide sequence of DNA-A showed that isolate G8 shared the highest sequence identity with Alternanthera yellow vein virus (AlYVV) isolates G38 and Hn51 at 95.9% and 94.3%, respectively. These results show that G8 infecting E. prostrata in Guangdong is a strain of AlYVV.  相似文献   

19.
Occurrence of three distinct begomoviruses in cassava in Madagascar   总被引:1,自引:0,他引:1  
The presence of East African cassava mosaic virus in association with cassava mosaic disease in Madagascar has previously been reported. We now describe virus isolates from mosaic‐affected Madagascan cassava with epitope profiles typical of African cassava mosaic virus, and an isolate with a nucleotide sequence similar to that of South African cassava mosaic virus. Thus, three distinct begomoviruses occur in cassava in Madagascar.  相似文献   

20.
The outbreak of a severe mosaic disease with a significant incidence was noticed on Jatropha curcas plants growing in Lucknow, Northern India. The causal virus was successfully transmitted by whiteflies (Bemisia tabaci) and grafting from naturally infected to healthy J. curcas plants. The association of Begomovirus with the mosaic disease of J. curcas was detected by PCR using primers specific to DNA‐A of Begomoviruses. Further, full‐length DNA‐A genome of ~2.7 kb was amplified by RCA followed by digestion with Bam HI restriction enzyme. Cloning and sequencing of obtained amplicons resulted in 2740 nucleotides of complete DNA‐A consisting of six ORFs and IR region (GenBank Accession HM230683 ). The sequence analysis revealed highest 85% similarities with Jatropha curcas mosaic virus, 77–84% with Indian cassava mosaic virus and 73–76% with Sri Lankan cassava mosaic virus isolates. Phylogenetic analysis of the Begomovirus isolate also showed a clear‐cut distinct relationship with earlier reported Begomoviruses from Jatropha curcas and other Begomoviruses. On the basis of the guidelines of the International Committee on Taxonomy of Viruses (ICTV‐2008), our virus isolate was identified as a possible strain of Indian cassava mosaic virus, and its name Jatropha mosaic India virus (JMIV) is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号