首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43-48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5-12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11-q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 × 10(-5), as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes.  相似文献   

2.
Mental retardation/intellectual disability is a devastating neurodevelopmental disorder with serious impact on affected individuals and their families, as well as on health and social services. It occurs with a prevalence of ∼2%, is an etiologically heterogeneous condition, and is frequently the result of genetic aberrations. Autosomal-recessive forms of nonsyndromic MR (NS-ARMR) are believed to be common, yet only five genes have been identified. We have used homozygosity mapping to search for the gene responsible for NS-ARMR in a large Pakistani pedigree. Using Affymetrix 5.0 single nucleotide polymorphism (SNP) microarrays, we identified a 3.2 Mb region on 8q24 with a continuous run of 606 homozygous SNPs shared among all affected members of the family. Additional genotype data from microsatellite markers verified this, allowing us to calculate a two-point LOD score of 5.18. Within this region, we identified a truncating homozygous mutation, R475X, in exon 7 of the gene TRAPPC9. In a second large NS-ARMR/ID family, previously linked to 8q24 in a study of Iranian families, we identified a 4 bp deletion within exon 14 of TRAPPC9, also segregating with the phenotype and truncating the protein. This gene encodes NIK- and IKK-β-binding protein (NIBP), which is involved in the NF-κB signaling pathway and directly interacts with IKK-β and MAP3K14. Brain magnetic resonance imaging of affected individuals indicates the presence of mild cerebral white matter hypoplasia. Microcephaly is present in some but not all affected individuals. Thus, to our knowledge, this is the sixth gene for NS-ARMR to be discovered.  相似文献   

3.
4.
Sickle cell disease (SCD) is an inherited autosomal recessive disorder. We aimed to describe the spectrum of haplotypes of BS-gene and to investigate a relationship with disease phenotype in patients with SCD in Southern Iran. We didn??t find any significant association between BS-globin gene haplotypes and clinical severity of the disease in an Iranian population. The exact mechanism by which the BS-globin gene polymorphism affects clinical presentation is not obvious; however, further detailed studies at the molecular level, with a larger sample size are required to show the mechanisms that influence the clinical presentation of SCD in Iranian population.  相似文献   

5.
Individuals expressing recessive mutations in the Deformed (Dfd) locus of Drosophila melanogaster were examined for embryonic and adult defects. Mutant embryos were examined in both scanning electron microscope and light microscope preparations. The adult Dfd recessive mutant phenotype was assessed in somatic clones and in survivors homozygous for hypomorphic alleles of the gene. The time of Dfd+ action was determined by studying a temperature conditional allele. Dfd+ is required in three embryonic cephalic segments to form a normal head. Mutant embryos of Dfd display defects in derivatives of the maxillary segment, of the mandibular segment, and of some more anterior segments. In the adult fly, defects are seen in the posterior aspect of the head when the gene is mutant. A transformation from head to thoracic-like tissue is seen dorsally and a deletion of structures is seen ventrally. Shift studies utilizing a temperature conditional allele have shown that the gene product is necessary during at least two periods of development, during embryonic segmentation and head involution and during the late larval and pupal stages. From these studies we conclude that Dfd is a homeotic gene necessary for proper specification of both the embryonic and the adult head.  相似文献   

6.
Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.  相似文献   

7.
Very little is known about the molecular basis of autosomal recessive MR (ARMR) because in developed countries, small family sizes preclude mapping and identification of the relevant gene defects. We therefore chose to investigate genetic causes of ARMR in large consanguineous Iranian families. This study reports on a family with six mentally retarded members. Array-based homozygosity mapping and high-resolution microarray-based comparative genomic hybridization (array CGH) revealed a deletion of approximately 150–200 kb, encompassing the promoter and the first six exons of the MCPH1 gene, one out of four genes that have been previously implicated in ARMR with microcephaly. Reexamination of affected individuals revealed a high proportion of prematurely condensed chromosomes, which is a hallmark of this condition, but in spite of the severity of the mutation, all patients showed only borderline to mild microcephaly. Therefore the phenotypic spectrum of MCPH1 mutations may be wider than previously assumed, with ARMR being the only consistent clinical finding.  相似文献   

8.
Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder that represents a likely source of childhood diabetes especially among countries in the consanguinity belt. The main responsible gene is WFS1 for which over one hundred mutations have been reported from different ethnic groups. The aim of this study was to identify the molecular etiology of WS and to perform a possible genotype–phenotype correlation in Iranian kindred.  相似文献   

9.

BACKGROUND:

The common GJB2 gene mutation (35delG) has been previously reported from Iranian patients that were affected with nonsyndromic autosomal recessive deafness. We, therefore, for the first time, investigated the prevalence and frequency of the GJB2 gene mutation in the Iranian deaf population with Arabian origins.

MATERIALS AND METHODs:

We amplified and sequenced the entire coding sequence of the GJB2 gene from 61 deaf patients and 26 control subjects.

RESULT:

None of the analyzed samples revealed deafness-associated mutation.

CONCLUSION:

This finding differs from several reports from Iran as we have focused on the GJB2 gene that possesses various mutations as the cause of congenital recessive deafness.  相似文献   

10.
Combined factor V-factor VIII deficiency (F5F8D) is a rare, autosomal recessive coagulation disorder in which the levels of both coagulation factor V and coagulation factor VIII are diminished. In order to map and subsequently clone the gene responsible for this phenotype, DNAs from 19 families (16 from Iran, 2 from Pakistan, and 1 from Algeria) with a total of 32 affected individuals were collected for a genomewide linkage search using genotypes of highly informative DNA polymorphisms. All pedigrees except two contained at least one consanguineous marriage. A maximum LOD score (Zmax) of 14.82 for theta = .02 was generated with marker D18S1129 in 18q21; LOD scores > 9 were obtained for several other markers-D18S849, D18S1103, D18S64, and D18S862. Multipoint analysis resulted in Zmax = 18.91 for the interval between D18S1129 and D18S64. Informative recombinants placed the locus for F5F8D between D18S849 and D18S1103, in an interval of approximately 1 cM. These results are similar to the recently reported linkage of this disease to chromosome 18q in Jewish families (Nichols et al. 1997) and provide evidence that the same gene is responsible for all F5F8D among human populations. The difference in clinical severity of the phenotype in unrelated families, as well as the failure to detect a specific haplotype of DNA polymorphisms in the consanguineous Iranian families, suggests the existence of different molecular defects in the F5F8D gene. There exists an apparently gap-free contig with CEPH YACs linking the two markers on either side of the critical region. Positional cloning efforts are now in progress to clone the F5F8D gene.  相似文献   

11.
Early onset intellectual disability (ID) is one of the largest unsolved problems of health care. Yet, it has received very little public attention in the past because many health care professionals do not perceive it as a health condition but as a social or educational issue. In severe ID, cytogenetically visible chromosomal abnormalities like trisomy 21 continue to be common, but since the introduction of array CGH, it is becoming clear that submicroscopic deletions and duplications are equally frequent, yet previously overlooked causes of ID. Until recently, the search for gene defects causing ID has focused on the X-chromosome. So far, >80 genes have been implicated in X-linked ID, largely owing to coordinated efforts of international consortia, and mutations in these genes account for >50% of the families with this condition. Autosomal forms, either due to dominant de novo mutations or to recessive gene defects, are presumably (far) more common than X-linked ones, and their molecular elucidation is a new challenge for research in this field. As recently shown, autosomal recessive ID (ARID) is extremely heterogeneous, and common forms are unlikely to exist. Ongoing studies into the function of ID genes are shedding more light on the pathogenesis of this disorder, and there is reason to believe that at least some genetic forms of ID may be amenable to drug treatment.  相似文献   

12.
Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.  相似文献   

13.
Chemotaxis-Defective Mutants of the Nematode CAENORHABDITIS ELEGANS   总被引:9,自引:5,他引:4       下载免费PDF全文
The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.  相似文献   

14.
Drosophila melanogaster larvae and adults respond to a wide range of chemosensory stimuli. We describe the genetics and developmental expression of the east gene, mutations which result in adult-specific chemosensory defects. The original isolate of east is semidominant for the behavioral phenotype. Several mutations have been generated, some of which are recessive lethals and others that are viable alleles that show a recessive, adult-specific, chemosensory defect. No larval chemosensory defects were observed. The east gene is expressed in the neurogenic region at the time of neuroblast segregation and in cells in the peripheral and central nervous system. Our results suggest that east+ expression in the nervous system is required for a normal adult chemosensory response and both increases and decreases in levels of the gene product result in a mutant phenotype.  相似文献   

15.
16.
Babaei M  Mitui M  Olson ER  Gatti RA 《Human genetics》2005,117(2-3):101-106
Ataxia–telangiectasia (A–T) is an autosomal recessive disorder caused by mutations in the ATM gene. The ATM gene spans more than 150 kb at chromosomal region 11q23.1 and encodes a product of 3,056 amino acids. The ATM protein is a serine/threonine protein kinase and is involved in oxidative stress, cell cycle control, and DNA repair. We analyzed the 11q22-23 haplotypes and associated mutations of 16 Iranian families. We utilized standardized short tandem repeat (STR) haplotypes to enhance mutation identification. In addition to the STR markers, single-nucleotide polymorphism haplotypes were determined, using three critical polymorphisms. The entire gene was screened sequentially by protein truncation testing, single-strand conformation polymorphism, and denaturing high-performance liquid chromatography to identify the disease-causing mutations. Of the expected 32 mutations, 25 (78%) were identified. All but two mutations led to a truncated or null form of the ATM protein (nonsense, splice site, or frameshift). Twelve mutations were identified for 15 haplotypes. Five mutations were novel. Mutations were located throughout the entire gene, with no clustering. Despite the absence of an Iranian founder mutation, three-fourths of the families were homozygous, suggesting that many undetected ATM mutations still exist in Iran. This study establishes a database for Iranian A–T families, and extends the global spectrum of ATM mutations.  相似文献   

17.
Porphyrias are rare metabolic hereditary diseases originating from defects in specific enzymes involved in the heme biosynthesis pathway. Congenital erythropoietic porphyria (CEP) is the rarest autosomal recessive porphyria resulting from a deficiency of uroporphyrinogen III cosynthase (UROS), the fourth enzyme in heme biosynthesis. CEP leads to an excessive production and accumulation of type Ι porphyrins in bone marrow, skin and several other tissues. Clinical manifestations are presented in childhood with severe cutaneous photosensitivity, blistering, scarring and deformation of the hands and the loss of eyebrows and eyelashes. Less than 200 cases of CEP have been reported to date. Four CEP patients and their family members were studied for the first time in Iran. A missense mutation in the UROS gene was identified in this family. A, T to C change at nucleotide 34313, leading to a substitution of Leucine by Proline at codon 237, was observed in the homozygous state in these 4 patients and heterozygous state in their parents. Our data from the Iranian population emphasizes the importance of codon 237 alone, given the rarity of this disease. This fact can be taken into consideration in the mutational analysis of UROS. This work emphasizes the advantages of molecular genetic techniques as diagnostic tools for the detection of clinically asymptomatic heterozygous mutation carriers as well as CEP within families.  相似文献   

18.
19.
Dubin-Johnson syndrome (DJS) is an autosomal recessive disease characterized by conjugated hyperbilirubinemia. Previous studies of the defects in the human canalicular multispecific organic anion transporter gene (MRP2/cMOAT) in patients with DJS have suggested that the gene defects are responsible for DJS. In this study, we determined the exon/intron structure of the human MRP2/cMOAT gene and further characterized mutations in patients with DJS. The human MRP2/cMOAT gene contains 32 exons, and it has a structure that is highly conserved with that of another ATP-binding-cassette gene, that for a multidrug resistance-associated protein. We then identified three mutations, including two novel ones. All mutations identified to date are in the cytoplasmic domain, which includes the two ATP-binding cassettes and the linker region, or adjacent putative transmembrane domain. Our results confirm that MRP2/cMOAT is the gene responsible for DJS. The finding that mutations are concentrated in the first ATP-binding-cassette domain strongly suggests that a disruption of this region is a critical route to loss of function.  相似文献   

20.
Skin from 36 hairless deer mice (Peromyscus maniculatus) homozygous for the recessive hr-2 mutation were analyzed for structural defects in hair and hair loss. Comparison of mutant to wild-type hairs demonstrated characteristic abnormalities in cellular organization, hair shape, length, and fragility. Matings between mutants homozygous for the hr-2 gene and for a second mutation producing hairlessness in deer mice, hr-1, showed that these two genes were nonallelic. Structural abnormalities in hairs associated with the expression of this gene suggest that its primary effect may be on the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号