首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent laboratory studies have demonstrated that Prunus necrotic ringspot virus (PNRSV) (family Bromoviridae) can be readily transmitted when thrips and virus‐bearing pollen are placed together on to test plants. For this transmission mechanism to result in stonefruit tree infection in the field, PNRSVbearing pollen must be deposited onto surfaces of stonefruit trees on which thrips also occur. In a previous paper, we demonstrated that almost all pollen in a PNRSV‐infected Japanese plum orchard in southeastern Queensland was deposited onto flowers, whereas few grains occurred on leaves and none on stems. Here, we present results of our investigation of thrips species composition, distribution and abundance on stonefruit trees in the same study area as our previous pollen deposition study. We collected a total of 2010 adult thrips from 13 orchards during the 1989, 1991 and 1992 flowering seasons of which all but 14 were in the suborder Terebrantia. Most (97.4%) terebrantian thrips were of three species, Thrips imaginis, Thrips australis and Thrips tabaci. Thrips tabaci as well as species mixtures that included T. imaginis, T. australis and T. tabaci have been shown to transmit PNRSV via infected pollen in laboratory tests. Adult thrips were frequently collected from flowers but rarely from leaves and never from stems. Large and significant differences in numbers of T. imaginis, T. australis and T. tabaci adults in flowers occurred among orchards and between seasons. No factor was conclusively related to thrips numbers but flowers of late‐flowering stonefruit varieties tended to hold more thrips than those of early‐flowering varieties. Our results indicate that the common thrips species present on stonefruit trees in the Granite Belt are also ones previously shown to transmit PNRSV via infected pollen in the laboratory and that these thrips are concentrated in tonefruit flowers where most stonefruit pollen is deposited. These results contribute to mounting circumstantial evidence that stonefruit flowers may be inoculated with PNRSV via an interaction of thrips with virus‐bearing pollen and that this transmission mechanism may be an important cause of new tree infections in the field  相似文献   

2.
Abstract

The onion thrips Thrips tabaci is one of the most important pests of greenhouse and open-field broccoli, onion and other crops. However, the current strategy of using synthetic pesticides for its control is inadequate and unsustainable, leading to a growing interest in novel and effective biological control alternatives such as entomopathogenic fungi. Among 20 isolates of Beauveria bassiana tested for virulence against T. tabaci in laboratory bioassays, we found strain SZ-26 as the most potent, causing 83–100% mortality in adults at 1×107 mL?1conidia after 4–7 days. Further experiments in greenhouses showed the strain SZ-26 significantly lowered the numbers of adult and larval stages.  相似文献   

3.
《Journal of Asia》2022,25(4):101997
Xenorhabdus and Photorhabdus are two bacterial genera specifically symbiotic to Steinernema and Heterorhabditis, which are the entomopathogenic nematode genera, respectively. These bacteria are well known to produce potent secondary metabolites suppressing insect immune responses. This study aimed to develop a potent microbial insecticide against the onion thrips, Thrips tabaci, using the bacterial metabolites. Among the chemical insecticides that have been used to control the thrips, spinosad was highly effective against both larvae and adults of T. tabaci. Three different entomopathogenic fungi were also effective to kill the thrips. However, the fungal virulence was much less than the control efficacy of the chemical insecticide, spinosad. To enhance the fungal virulence of Beauveria bassiana (Bb), the bacterial culture broth of Xenorhabdus/Photorhabdus was added to suppress the thrips immune defense. Among six different bacterial species, X. hominickii (Xh) produced highly potent metabolites to enhance the fungal virulence. Indeed, four different bacterial metabolites (GameXPeptide, benzylideneacetone, oxindole, and 3-ethoxy-4-methoxyphenol) of the bacteria suppressed the gene expressions of an antimicrobial peptide, lysozyme, which was highly inducible to the fungal infection. To optimize the mixture ratio of fungal and bacterial pathogens, the fungal conidia and bacterial culture broth were freeze-dried and mixed in different ratios. Laboratory and field assays showed that a mixture spray of freeze-dried Xh culture broth (3 g) and Bb conidia (1.17 × 109 conidia) in a liter was effective to control T. tabaci infesting welsh onion.  相似文献   

4.
Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, are both important polyphagous pests of vegetables and ornamentals in greenhouses. Difficulties in biological control of these pests have prompted a search for new natural enemies. Most recently, the predatory mite Amblyseius swirskii has been commercialised as biological control agent of whiteflies and thrips. However, little is known about the suitability of thrips as prey for A. swirskii. We therefore assessed prey acceptance and life history of A. swirskii when feeding on F. occidentalis and T. tabaci at 25±1°C. Amblyseius swirskii juveniles preyed upon first larval instars of both F. occidentalis and T. tabaci but suffered from high mortality (67 and 78%). Developmental time (egg to adult) of A. swirskii was 7.8 days with either prey species. Adult A. swirskii females readily accepted first larval instars of both thrips species, which were attacked in <20 min on a leaf and <10 min in an artificial cage. Oviposition rates (0.92 and 0.99 eggs/female/day) and offspring sex ratios (63 and 70% females) were similar with F. occidentalis and T. tabaci as prey. Less than one-third of juveniles reaching adulthood and oviposition rates below one egg/female per day resulted in relatively low intrinsic rates of increase (r m) (0.056 and 0.024 per day with F. occidentalis and T. tabaci, respectively). Altogether, our study suggests that the recently reported superiority of A. swirskii to the widely used Neoseiulus cucumeris in suppression of thrips is due to other traits than its population growth capacity with thrips as prey.  相似文献   

5.
The onion thrips, Thrips tabaci Lind. (Thysanoptera: Thripidae), is an important pest of the canola crop, Brassica napus L., in the Ardabil region. In this study, life history parameters of T. tabaci were investigated on six canola cultivars, namely: Talayh, Zarfam, RGS003, Opera, Option500, and Hayola401. Experiments were performed in a climate chamber set at 25 ± 1°C and 55 ± 5% RH under 16L:8D. The results indicated that the development time of immature stages was significantly longer on RGS003 than on Opera, Hyola401, Zarfam, Option500, and Talayh. The onion thrips reared on RGS003 had the lowest number of eggs laid per female (15.5) and the lowest survival rate (40%) among the tested cultivars. The lowest intrinsic rate of natural increase (r m) and population growth rate (λ) were observed on RGS003, and were the highest on Zarfam. The generation time (T) was shortest on Zarfam (21.5 days) and longest on RGS003 (26.5 days). Similarly, the doubling time (DT) was shortest on Zarfam (4.5 days) and longest on RGS003 (8.1 days). Considering the significant effect of the host plant on the life history parameters of onion thrips, it was concluded that RGS003 is the least suitable cultivar among the other tested canola cultivars for integrated management of onion thrips in canola fields.  相似文献   

6.
Transmission of prunus necrotic ringspot virus using plum pollen and thrips   总被引:1,自引:0,他引:1  
Prunus necrotic ringspot virus (PNRSV) was transmitted to cucumber but not to peach seedlings after they were dusted with infective plum pollen and caged with 8–10 thrips per seedling for 24 h. When the pollen was taken from three plum trees shown by mechanical inoculation tests to have highly infective flower buds and pollen, the transmission rates to cucumber seedlings were 56% with Thrips tabaci and 66% with a mixture of five thrips species collected from Ageratum houstonianum flowers. However, the transmission rate averaged only 7% when pollen was taken from five other plum trees which had flowers with less infectivity in sap transmission tests. In 1990 T. imaginis, T. tabaci and T. australis, which were present in the mixture of thrips from A. houstonianum, also formed the major part of the thrips population in flowers of the plum trees used as the pollen source.  相似文献   

7.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

8.
The objectives of this work were to estimate the capability of local populations of thrips as vectors of groundnut ringspot virus (GRSV) and tomato spotted wilt virus (TSWV), and to determine the species composition of vectors in tomato crops. Transmission assays were performed. Incidence of tospoviruses was estimated in commercial crops. Random samples of flowers were taken from tomato for identification of thrips. Of the five species of thrips tested, Frankliniella gemina (first record), F. occidentalis and F. schultzei transmitted GRSV and TSWV. F. schultzei was a significantly more efficient vector of GRSV than F. occidentalis under controlled assay conditions. The thrips were identified on flowers from six surveyed tomato crops. F. occidentalis was the most frequently identified species (43.0%), followed by F. schultzei (35.6%) and Thrips tabaci (10.1%). The incidence of tospoviruses was low (1.1–2.8%) in crops planted during August–September and greater (9.5–61.1%) in crops planted in December. GRSV was prevalent (85%) over TSWV (11%).  相似文献   

9.
The effect of a thrips‐non‐transmissible Tomato spotted wilt virus (TSWV) on insect–host interactions between thrips and Arabidopsis thaliana was analysed. A wild‐type TSWV virulent isolate and a TSWV isolate that induces mild symptoms on inoculated plants (TSWV‐Mo) were used in this study, and TSWV‐Mo isolate was obtained by single local lesion isolation using Petunia x hybrid after several passages on Nicotiana rustica plants. In transmission test, although wild‐type TSWV (TSWV‐wt) was transmitted by two thrips species (transmission ratio; Frankliniella occidentalis, 25%; Thrips tabaci, 10%; and T. palmi, 0%), none of the thrips transmitted TSWV‐Mo. Feeding damage by F. occidentalis in A. thaliana plants was more extensive on TSWV‐wt‐infected plants than on TSWV‐Mo‐infected plants, despite comparable preference. Among the markers of plant defences, salicylic acid‐regulated genes were upregulated threefold to sixfold by TSWV‐wt or TSWV‐Mo infection. In contrast, jasmonate‐regulated genes and jasmonate/ethylene‐regulated genes were not affected by the infections. Pull assays showed that adjacent TSWV‐Mo‐infected plants were preferred over uninfected plants. In conclusion, our results showed that the transmissibility by thrips of TSWV is not related to preference of vector thrips and suggested that TSWV‐Mo‐infected plants may be used as attractants for behaviour control of thrips.  相似文献   

10.
Populations of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), were shown to differ significantly in their ability to transmit an isolate of tomato spotted wilt virus (Tospovirus: Bunyaviridae) (TSWV) collected from potato [Solanum tuberosum L. (Solanaceae)]. To gain an understanding of the basis for this variation, we generated reciprocal crosses between an efficient and an inefficient transmitting population. The resulting F1 progeny and progeny from the parental populations were tested for their ability to transmit TSWV. Our results indicate that the ability to transmit TSWV efficiently by T. tabaci is inherited as a recessive trait.  相似文献   

11.
Two field experiments examined the distance over which an attractant odour of a volatile chemical could influence thrips capture in proximal traps that were without the odour. In each experiment a star‐shaped array of water traps consisted of a centre trap with or without an odour surrounded by odourless traps at 0.5, 1, 2, 5, and 10 m in eight equally spaced radial arms 45° apart. Experiments ran for 47 h (centre trap: ethyl nicotinate) or 7 h (centre trap: ethyl isonicotinate). Each had four replicates. With ethyl nicotinate, more thrips were trapped in the centre‐baited traps than in the unbaited centre traps (63×, 7×, 98× and 200× for total thrips, Thrips tabaci Lindeman ♀, and Thrips obscuratus Crawford ♀and ♂, respectively) (Thysanoptera: Thripidae). More total thrips and T. tabaci♀ were trapped in the centre traps baited with ethyl isonicotinate than in unbaited centre traps (21× for both). For ethyl nicotinate, numbers of T. obscuratus in unbaited traps downwind from the baited centre trap declined by 50% within 0.4 m (♀) and 2 m (♂) and by 95% within 3 m (both ♀ and ♂) based on model predictions. For ethyl isonicotinate, numbers of T. tabaci in unbaited traps downwind from the baited centre trap declined by 50% within 1.3 m and by 95% within 10 m based on model predictions. Wind direction was an important factor in the degree and direction of thrips capture with the highest thrips capture downwind from the centre trap with odour. There was no increase in numbers of T. tabaci in any traps without odour in the ethyl nicotinate‐centred array. Differences in trapping patterns between thrips species and odours indicated that there were thrips species–odour specific interactions. Experiments examining differences between traps with and without a thrips attractant odour need to be designed very carefully to ensure meaningful results especially in enclosed and/or low‐wind indoor situations.  相似文献   

12.
Sexual reproduction may be advantageous for hosts that are preyed on or parasitized by enemies that are highly adapted to them. Sexual reproduction can create rare genotypes that may escape predation by virtue of rarity and can create variable progeny that may escape predation if enemies are specialized to only one genotype of host. Populations of the herbivorous thrips, Apterothrips apteris, have been shown to be adapted to individual Erigeron glaucus clones. Here, we show that thrips adapted to the parental clone could better use plant progeny of the “home” clone produced through selfing than progeny derived from selfing of other clones. Thus, despite recombination, progeny produced by selfing presented a resource that was similar to the parental phenotype with respect to use by adapted thrips. We also show that E. glaucus susceptibility to thrips has a genetic basis and then ask whether outcrossing provides a means for E. glaucus clones to escape attack by adapted thrips. When we compared the success of thrips on progeny produced by selfing or outcrossing of the home clone, we found that the merits or disadvantages associated with outcrossing were dependent on the susceptibility to infestation of the parental clones. Selfing by clones characterized by low infestations of thrips appeared to preserve resistant genotypes; all outcrossed progeny had, on average, higher infestation levels than selfed progeny. In contrast, outcrossed progeny of clones characterized by high infestations of thrips had either the same thrips density as progeny from selfing, when the pollen donor was a highly infested clone, or lower density, when the pollen donor was a low infestation clone. The advantages of outcrossing were caused by the alleles contributed to progeny rather than to progeny variability or rarity.  相似文献   

13.
Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae) are major pests in greenhouse grown cucumber crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown an effective biological control agent of both pests. Hence, perhaps both pests can be controlled simultaneously by this predator. However, with simultaneous infestation of both pests, synergistic effects, or interference could affect biological control and perhaps require changes in release rates of the predator. Thus, the aim of the present study was to evaluate different release rates of A. swirskii to control both pests under a worst case scenario of rapid immigration into a cucumber greenhouse. Two experiments were conducted, one simulating the influx of whiteflies alone (whitefly experiment) and the other immigration of whiteflies and thrips together (whitefly plus thrips experiment). Three treatments were compared in the whitefly experiment: (1) B. tabaci alone, (2) B. tabaci + 25 A. swirskii m−2 and (3) B. tabaci + 75 A. swirskii m−2. The high release rate was more effective than the low rate in controlling B. tabaci alone. The high rate was subsequently tested against B. tabaci and F. occidentalis for the whitefly and thrips experiment in which five treatments were compared: (1) B. tabaci alone, (2) F. occidentalis alone, (3) B. tabaci + 75 A. swirskii m−2, (4) F. occidentalis + 75 A. swirskii m−2 and (5) B. tabaci + F. occidentalis + 75 A. swirskii m−2. This rate of A. swirskii controlled whiteflies and thrips either alone or together. Therefore, 75 A. swirskii m−2 should be an adequate rate for controlling both pests either alone or simultaneously in cucumber greenhouses.  相似文献   

14.
The integration of chemical insecticides and infective juveniles of the entomopathogenic nematode Steinernema carpocapsae (Wesier) (Nematoda: Steinernematidae), to control second instars of the sweetpotato whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) was investigated. Using a sand bioassay, the effects of direct exposure of S. carpocapsae for 24 h to field rate dilutions of four insecticides (spiromesifen, thiacloprid, imidacloprid and pymetrozine) on infectivity to Galleria mellonella larvae were tested. Although all chemicals tested, except spiromesifen, produced acceptable nematode infectivity rates, they were all significantly less than the water control. The effect of insecticide treatment (dry residues of spiromesifen, thiacloprid and pymetrozine and soil drench of imidacloprid) on the efficacy of the nematode against B. tabaci was also investigated. Nematodes in combination with thiacloprid and spiromesifen gave higher B. tabaci mortality (86.5% and 94.3% respectively) compared to using nematodes alone (75.2%) on tomato plants. There was no significant difference in B. tabaci mortality when using the chemicals imidacloprid, pymetrozine and spiromesifen in conjunction with nematodes compared to using the chemicals alone. However, using thiacloprid in combination with the nematodes produced significantly higher B. tabaci mortality than using the chemical alone. The integration of S. carpocapsae and these chemical agents into current integrated pest management programmes for the control of B. tabaci is discussed.  相似文献   

15.
Rabbit immunoglobulin G (R‐IgG) was used successfully as an external mark for thrips. Females of both Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) were marked with 1 mg ml?1 R‐IgG solution with 1%‘Tween 20’ by the contact exposure method. Determining the retention of the mark was by running the rinsing solution of individual thrips in an enzyme‐linked immunosorbent assay (ELISA). The sandwich ELISA method was used with an additional biotin–avidin step. The threshold for a positive marking score was defined as three times the mean optical density readings of the negative control thrips. Under laboratory conditions, on bean pods, all marked thrips scored positive up to 6 days after marking (DAM). When marked thrips were kept in the laboratory on marigold flowers for 2 days, they all scored positive. When marked and unmarked thrips were placed together on these flowers, the mark was transferred to 10–20% of the unmarked thrips and they became positive. Under field conditions, on sticky traps covered with water‐base glue, 100, 80, and 20% of the marked T. tabaci scored positive by the 3rd, 6th, and 9th DAM, respectively. Under the same conditions 100, 90, and 10% of the marked F. occidentalis scored positive by the 3rd, 6th, and 9th DAM, respectively. The retention of the R‐IgG decreased significantly under conditions of wetness and high humidity. After 6 days on chive plants kept at 80–100% r.h., all marked thrips scored negative while on plants kept at 40–60% r.h., 85% of the marked thrips scored positive. Rabbit IgG can be used as an external marker for thrips. The suitability of this marking method for dispersal studies of these important pests needs to be evaluated.  相似文献   

16.
The potential for using the entomopathogenic fungus Lecanicillium muscarium to control the sweetpotato whitefly, Bemisia tabaci has been established in the laboratory by other studies. Laboratory studies however frequently overestimate the level of control achieved by biological control agents in the glasshouse. Before full-scale commercial or field development is considered, glasshouse trials are required to confirm laboratory results. Under both controlled laboratory and glasshouse conditions high mortality of second instar B. tabaci was recorded after application of L. muscarium. The potential of incorporating L. muscarium into integrated pest management strategies for the control of B. tabaci is discussed.  相似文献   

17.
‘Lure-and-infect’ is an insect pest management strategy with high potential but so far there are few examples of its application. Using traps as surrogates for auto-dissemination devices, we tested the attractiveness to naturally occurring thrips (Thysanoptera: Thripidae) of three trap types differing in colour and structure, with and without the thrips lure methyl isonicotinate (MI), and sticky plate traps as a control. The aim was to find more effective traps that could be further developed into devices for auto-dissemination and lure-and-infect of thrips. The number of thrips captured varied substantially with trap type and the presence of the MI lure. We found a high visual response to a sticky ‘white ruffle’ trap (i.e., a 30-cm-long cylindrical outline of folded fabric), compared to a commonly used blue sticky plate trap (Bug-scan) as the control. This effect was seen both in a greenhouse with roses (Rosa spp.), where we encountered western flower thrips, Frankliniella occidentalis (Pergande), and in a grass field, where we encountered onion thrips, Thrips tabaci Lindeman, and New Zealand flower thrips, Thrips obscuratus (Crawford). In the absence of MI, the white ruffle trap caught 7–22× more thrips than the control Bug-scan trap. A similarly designed blue ruffle trap and a modified Lynfield trap caught lower thrips numbers than the white ruffle and the control Bug-scan traps. Presence of MI substantially increased the captures of T. tabaci in all three trap types in the field (2.5–18×). In the greenhouse, without MI the white ruffle trap caught 3.5–14× more thrips than the Bug-scan, blue ruffle, or modified Lynfield traps. Presence of MI increased the captures of F. occidentalis males and females in the Lynfield and blue ruffle traps (1.4–2.8×), but not in the white ruffle trap in the greenhouse (ca. 1.1×). The importance of visual and olfactory factors for the design of effective auto-dissemination and lure-and-infect strategies for thrips management is discussed.  相似文献   

18.
When pollen of sowbane mosaic sobemovirus (SoMV)-infected Chenopodium amaranticolor was dusted onto C. amaranticolor and C. quinoa test seedlings which were then infested with 5–10 adult Thrips tabaci, SoMV was transmitted to 25%C. amaranticolor and 88% of C. quinoa plants. Five hours access of T. tabaci to pollen-contaminated C. quinoa seedlings was sufficient for SoMV transmission, but 1 h was not. SoMV was also transmitted when T. tabaci was mixed with pollen of C. amaranticolor and then placed on C. quinoa test seedlings. Further, plant-to-plant transmission of SoMV occurred in the absence of virus-carrying pollen when T. tabaci was caged on infected non-flowering C. amaranticolor or C. quinoa for 1–8 days and then adults transferred to C. quinoa test seedlings. This is the first time that thrips have been shown to be a vector of SoMV, and that a virus outside the ilarvirus group is reported to be transmitted using pollen and thrips.  相似文献   

19.
This study documents the behavioural repertoire of Thrips tabaci. Seventeen behavioural elements shown by adult females were videotaped, described and classified into seven behavioural categories. The comparison of thrips behaviour on leek and cucumber over 24 h (L:D = 16:8) revealed that on cucumber thrips spent significantly less time being inactive, but significantly more time with feeding resulting in significantly higher feeding damage compared to leek. Oviposition behaviour incidence and oviposition rate were somewhat, but not significantly lower on cucumber compared to leek. Sequences of leaf surface exploration lasted significantly longer on cucumber than on leek. Thrips females were as active during light as during dark periods. Our results show that T. tabaci females spend different amounts of time with resting, feeding and explorative behaviours on leek and cucumber, thus indicating differences in host use on these two crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号