首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K H Chang  E A Brown    S M Lemon 《Journal of virology》1993,67(11):6716-6725
The 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA contains structural elements which facilitate 5' cap-independent initiation of virus translation and are likely to interact with cellular proteins functioning as translation initiation factors. To define these interactions, we characterized the binding of ribosome-associated proteins from several cell types to synthetic RNAs representing segments of the 5'NTR by using a UV cross-linking/label transfer assay. Four major proteins (p30, p39, p57, and p110) were identified. p30 and p39 were present in ribosomal salt washes prepared only from HAV-permissive BS-C-1 and FRhK-4 cells, while p57 was found only in HeLa cells and rabbit reticulocyte lysates. p110 was present in all cell types. Both p30 and p39 bound to multiple sites within the 5'NTR. Efficient transfer of label to p30 occurred with minimal RNA probes representing nucleotides (nt) 96 to 155, 151 to 354, and, to a much lesser extent, 634 to 744, while label transfer to p39 occurred with probes representing nt 96 to 155 and 634 to 744. All of these probes represent regions of the 5'NTR which are rich in pyrimidines. Competitive inhibition studies indicated that both p30 and p39 bound with greater affinity to sites in the 5' half of the NTR (a probe representing nt 1 to 354) than to the more 3' site (nt 634 to 744). Binding of p39 to the probe representing nt 96 to 155 was inhibited in the presence of an equal amount of proteins derived from HeLa cells, suggesting that p39 shares binding site specificity with one or more HeLa cell proteins. A 57-kDa protein in HeLa cell protein extracts reacted with antibody to polypyrimidine tract-binding protein in immunoblots, but no immunoreactive protein was identified in a similar BS-C-1 protein fraction. These results demonstrate that ribosome-associated proteins which bind to the 5'NTR of HAV vary substantially among different mammalian cell types, possibly accounting for differences in the extent to which individual cell types support growth of the virus. Mutations in the 5'NTR which enhance the growth of HAV in certain cell types may reflect specific adaptive responses to these or other proteins.  相似文献   

2.
An analysis of published nucleotide sequences of the 5'-untranslated region (5'-UTR) of 7 cardioviruses and 3 aphthoviruses has allowed us to derive a consensus secondary structure model that differs from that previously proposed for the 5'-UTR of entero- and rhinoviruses, though all these viruses belong to the same family, Picornaviridae. The theoretical model derived here was experimentally supported by investigating the accessibility of encephalomyocarditis virus RNA to modifications with dimethyl sulfate and its susceptibility to S1 and cobra venom nucleases. The possible involvement of the 5"-UTR secondary structure domains in the translational control is briefly discussed.  相似文献   

3.
The 3' nontranslated region (NTR) of the pestivirus Bovine viral diarrhea virus (BVDV), a close relative of human Hepatitis C virus, consists of three stem-loops which are separated by two single-stranded regions. As in other positive-stranded RNA viruses, the 3' NTR of pestiviruses is involved in crucial processes of the viral life cycle. While several studies characterized cis-acting elements within the 3' NTR of a BVDV replicon, there are no studies addressing the significance of these elements in the context of a replicating virus. To examine the functional importance of 3' NTR elements, a set of 4-base deletions and deletions of each of the three stem-loops were introduced into an infectious BVDV cDNA clone. Emerging mutant viruses were characterized with regard to plaque phenotype, growth kinetics, and synthesis of viral RNA. The results indicated that presence of stem-loop (SL) I and the 3'-terminal part of the single-stranded region between stem-loops I and II are indispensable for pestiviral replication. In contrast, deletions within SL II and SL III as well as absence of either SL II or SL III still allowed efficient viral replication; however, a mutant RNA lacking both SL II and SL III was not infectious. The results of this study provide a detailed map of the essential and nonessential elements within the 3' NTR of BVDV and contribute to our understanding of sequence and structural elements important for efficient viral replication of pestiviruses in natural host cells.  相似文献   

4.
5.
6.
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.  相似文献   

7.
8.
Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals.  相似文献   

9.
The RNA genomes of human hepatitis C virus (HCV) and the animal pestiviruses responsible for bovine viral diarrhea (BVDV) and hog cholera (HChV) have relatively lengthy 5' nontranslated regions (5'NTRs) sharing short segments of conserved primary nucleotide sequence. The functions of these 5'NTRs are poorly understood. By comparative sequence analysis and thermodynamic modeling of the 5'NTRs of multiple BVDV and HChV strains, we developed models of the secondary structures of these RNAs. These pestiviral 5'NTRs are highly conserved structurally, despite substantial differences in their primary nucleotide sequences. The assignment of similar structures to conserved segments of primary nucleotide sequence present in the 5'NTR of HCV resulted in a model of the secondary structure of the HCV 5'NTR which was refined by determining sites at which synthetic HCV RNA was cleaved by double- and single-strand specific RNases. These studies indicate the existence of a large conserved stem-loop structure within the 3' 200 bases of the 5'NTRs of both HCV and pestiviruses which corresponds to the ribosomal landing pad (internal ribosomal entry site) of HCV. This structure shows little relatedness to the ribosomal landing pad of hepatitis A virus, suggesting that these functionally similar structures may have evolved independently.  相似文献   

10.
The role of the 5' nontranslated region in the replication of hepatitis A virus (HAV) was studied by analyzing the translation and replication of chimeric RNAs containing the encephalomyocarditis virus (EMCV) internal ribosome entry segment (IRES) and various lengths (237, 151, or 98 nucleotides [nt]) of the 5'-terminal HAV sequence. Translation of all chimeric RNAs, truncated to encode only capsid protein sequences, occurred with equal efficiency in rabbit reticulocyte lysates and was much enhanced over that exhibited by the HAV IRES. Transfection of FRhK-4 cells with the parental HAV RNA and with chimeric RNA generated a viable virus which was stable over continuous passage; however, more than 151 nt from the 5' terminus of HAV were required to support virus replication. Single-step growth curves of the recovered viruses from the parental RNA transfection and from transfection of RNA containing the EMCV IRES downstream of the first 237 nt of HAV demonstrated replication with similar kinetics and similar yields. When FRhK-4 cells infected with recombinant vaccinia virus producing SP6 RNA polymerase to amplify HAV RNA were transfected with plasmids coding for these viral RNAs or with subclones containing only HAV capsid coding sequences downstream of the parental or chimeric 5' nontranslated region, viral capsid antigens were synthesized from the HAV IRES with an efficiency equal to or greater than that achieved with the EMCV IRES. These data suggest that the inherent translation efficiency of the HAV IRES may not be the major limiting determinant of the slow-growth phenotype of HAV.  相似文献   

11.
Mutagenesis of the 3' nontranslated region of Sindbis virus RNA.   总被引:8,自引:20,他引:8       下载免费PDF全文
R J Kuhn  Z Hong    J H Strauss 《Journal of virology》1990,64(4):1465-1476
A cDNA clone from which infectious RNA can be transcribed was used to construct 42 site-specific mutations in the 3' nontranslated region of the Sindbis virus genome. The majority of these mutations were made in the 3'-terminal 19-nucleotide conserved sequence element and consisted of single nucleotide substitutions or of small (1 to 8) nucleotide deletions. An attempt was made to recover mutant viruses after transfection of SP6-transcribed RNA into chicken cells. In most cases, viable virus was recovered, but almost all mutants grew more poorly than wild-type virus when tested under a number of culture conditions. In the case of mutations having only a moderate effect, the virus grew as well as the wild type but was slightly delayed in growth. Mutations having a more severe effect led to lower virus yields. In many cases, virus growth was more severely impaired in mosquito cells than in chicken cells, but the opposite phenotype was also seen, in which the mutant grew as well as or better than the wild type in mosquito cells but more poorly in chicken cells. One substitution mutant, 3NT7C, was temperature sensitive for growth in chicken cells and severely crippled for growth in mosquito cells. Insertion mutations were also constructed which displaced the 19-nucleotide element by a few nucleotides relative to the poly(A) tail. These mutations had little effect on virus growth. Deletion of large regions (31 to 293 nucleotides long) of the 3' nontranslated region outside of the 19-nucleotide element resulted in viruses which were more severely crippled in mosquito cells than in chicken cells. From these results, the following principles emerge. (i) The entire 3' nontranslated region is important for efficient virus replication, although there is considerable plasticity in this region in that most nucleotide substitutions or deletions made resulted in viable virus and, in some cases, in virus that grew quite efficiently. Replication competence was particularly sensitive to changes involving the C at position 1, the A at position 7, and a stretch of 9 U residues punctuated by a G at position 14. (ii) The panel of mutants examined collectively deleted the entire 3' nontranslated region. Only mutants in which 8 nucleotides in the 3' terminal 19 nucleotides had been deleted or in which the 3' terminal C was deleted were nonviable. Although the 3' terminal C was essential for replication, it could be displaced by at least 7 nucleotides from its 3' terminal position adjacent to the poly(A) tract.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
Hepatitis C virus (HCV) is a positive-sense RNA virus approximately 9600 bases long. An internal ribosomal entry site (IRES) spans the 5' nontranslated region, which is the most conserved and highly structured region of the HCV genome. In this study, we demonstrate that nucleotides 428-442 of the HCV core-coding sequence anneal to nucleotides 24-38 of the 5'NTR, and that this RNA-RNA interaction modulates IRES-dependent translation in rabbit reticulocyte lysate and in HepG2 cells. The inclusion of the core-coding sequence (nucleotides 428-442) significantly suppressed the translational efficiency directed by HCV IRES in dicistronic reporter systems, and this suppression was relieved by site-directed mutations that blocked the long-range interaction between nucleotides 24-38 and 428-442. These findings suggest that the long-range interaction between the HCV 5'NTR and the core-coding nucleotide sequence down-regulate cap-independent translation via HCV IRES. The modulation of protein synthesis by long-range RNA-RNA interaction may play a role in the regulation of viral gene expression.  相似文献   

14.
15.
Very little is known about the mechanisms mediating longevities of mRNAs. As a means of identifying potential cis- and trans-acting elements which stabilize an individual mRNA, naturally occurring mutations that decreased stability of the normally long-lived globin mRNA were analyzed. Our previous studies demonstrated that a subset of mutations which allowed the translating ribosome to read through into the alpha 2-globin 3' nontranslated region (NTR) targeted the mutant mRNAs for accelerated turnover in erythroid cells but not in several nonerythroid cell lines (I. M. Weiss and S. A. Liebhaber, Mol. Cell. Biol. 14:8123-8132, 1994). These results suggested that translational readthrough interfered with some feature of the alpha 2-globin 3' NTR required for message stability in erythroid cells. To define the cis-acting sequences which comprise this erythroid cell-specific stability determinant, scanning mutagenesis was performed on the alpha 2-globin 3' NTR, and the stability of each mutant mRNA was examined during transient expression. Three cytidine-rich regions which are required for longevity of the alpha 2-globin mRNA were identified. However, in contrast to the readthrough mutations, base substitutions in these elements destabilize the message through a translation-independent mechanism. To account for these results, we propose that the cis-acting elements form a complex or determinant in the normal alpha 2-globin mRNA which protects the message from degradation in erythroid cells. Disruption of this determinant, by translational readthrough or because mutations in an element prevent or inhibit its formation, targets the message for accelerated turnover in these cells.  相似文献   

16.
S P Day  P Murphy  E A Brown    S M Lemon 《Journal of virology》1992,66(11):6533-6540
Passage of human hepatitis A virus (HAV) in cell culture results in attenuation of the virus as well as progressive increases in the efficiency of virus replication in cell culture. Because the presence of identical mutations within the 5' nontranslated regions (5'NTRs) of several independently isolated cell culture-adapted HAV variants suggests that the 5'NTR may play a role in determining this change in virus host range, we constructed chimeric infectious cDNA clones in which portions of the 5'NTR of cell culture-adapted HM175/p35 virus were replaced with cDNA from either wild-type virus (HM175/wt) or a second independently isolated, but closely related cell culture-adapted virus (HM175/p16). Substitution of the complete 5'NTR of HM175/p35 with the 5'NTR of HM175/wt resulted in virus with very small replication foci in continuous African green monkey kidney (BS-C-1) cells, indicating that 5'NTR mutations in HM175/p35 virus are required for optimal growth in these cells. A chimera with the 5'NTR sequence of HM175/p16 retained the large foci of HM175/p35 virus, while the growth properties of other viruses having chimeric 5'NTR sequences indicated that mutations at bases 152 and/or 203 to 207 enhance replication in BS-C-1 cells. These findings were confirmed in one-step growth experiments, which also indicated that radioimmunofocus size is a valid measure of virus replication competence in cell culture. An additional mutation at base 687 of HM175/p16 had only a minor role in enhancing growth. In contrast to their effect in BS-C-1 cells, these 5'NTR mutations did not enhance replication in continuous fetal rhesus monkey kidney (FRhK-4) cells. Thus, mutations at bases 152 and/or 203 to 207 enhance the replication of HAV in a highly host cell-specific fashion.  相似文献   

17.
18.
The 5' nontranslated region (NTR) of pestiviruses functions as an internal ribosome entry site (IRES) that mediates cap-independent translation of the viral polyprotein and probably contains additional cis-acting RNA signals involved in crucial processes of the viral life cycle. Computer modeling suggests that the 5'-terminal 75 nucleotides preceding the IRES element form two stable hairpins, Ia and Ib. Spontaneous and engineered mutations located in the genomic region comprising Ia and Ib were characterized by using infectious cDNA clones of bovine viral diarrhea virus. Spontaneous 5' NTR mutations carrying between 9 and 26 A residues within the loop region of Ib had no detectable influence on specific infectivity and virus growth properties. After tissue culture passages, multiple insertions and deletions of A residues occurred rapidly. In contrast, an engineered mutant carrying 5 A residues within the Ib loop was genetically stable during 10 tissue culture passages. This virus was used as starting material to generate a number of additional mutants. The analyses show that (i) deletion of the entire Ib loop region resulted in almost complete loss of infectivity that was rapidly restored during passages in cell culture by insertions of variable numbers of A residues; (ii) mutations within the 5'-terminal 4 nucleotides of the genomic RNA severely impaired virus replication; passaging of the supernatants obtained after transfection resulted in the emergence of efficiently replicating mutants that had regained the conserved 5'-terminal sequence; (iii) provided the conserved sequence motif 5'-GUAU was retained at the 5' end of the genomic RNA, substitutions and deletions of various parts of hairpin Ia or deletion of all of Ia and part of Ib were found to support replication, but to a lower degree than the parent virus. Restriction of specific infectivity and virus growth of the 5' NTR mutants correlated with reduced amounts of accumulated viral RNAs.  相似文献   

19.
20.
The genome of the hepatitis C virus (HCV) is a plus-strand RNA molecule that carries a single long open reading frame. It is flanked at either end by highly conserved nontranslated regions (NTRs) that mediate crucial steps in the viral life cycle. The 3' NTR of HCV has a tripartite structure composed of an about 40-nucleotide variable region, a poly(U/UC) tract that has a heterogeneous length, and a highly conserved 98-nucleotide 3'-terminal sequence designated the X tail or 3'X. Conflicting data as to the role the sequences in the 3' NTR play in RNA replication have been reported. By using the HCV replicon system, which is based on the self-replication of subgenomic HCV RNAs in human hepatoma cell line Huh-7, we mapped in this study the sequences in the 3' NTR required for RNA replication. We found that a mutant with a complete deletion of the variable region is viable but that replication is reduced significantly. Only replicons in which the poly(U/UC) tract was replaced by a homouridine stretch of at least 26 nucleotides were able to replicate, whereas RNAs with homopolymeric guanine, adenine, or cytosine sequences were inactive. Deletions of individual or all stem-loop structures in 3'X were not tolerated, demonstrating that this region is most crucial for efficient RNA replication. Finally, we found that none of these deletions or substitutions within the 3' NTR affected RNA stability or translation, demonstrating that the primary effect of the mutations was on RNA replication. These data represent the first detailed mapping of sequences in the 3' NTR assumed to act as a promoter for initiation of minus-strand RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号