首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Thrombospondin (TS) mediates attachment, spreading, and motility of several cell types through at least four cell binding domains: the amino-terminal heparin binding domain, the type I repeats containing the CSVTCG sequence, the RGDA sequence in the last of the type III calcium binding repeats and the carboxyl-terminal cell or platelet binding domain (CBD). The attachment of human melanoma cells (G361) to the COOH-terminal domain is independent of the RGDA sequence and is inhibited by the monoclonal antibody C6.7. To define the cell binding site(s) within this 212-residue COOH-terminal domain, we have synthesized eight overlapping peptides (seven 30-mers and a final 37-mer) representing the entire sequence of the CBD. Several of these peptides are insoluble in aqueous buffers at high concentration. Cell adhesion assays have been devised which employ covalent coupling of peptides in chaotropic solvents to chemically derivatized plastic 96-well plates. Three synthetic peptides, two of which are nonadjacent in the linear sequence, are potent attachment factors for G361 cells. C6.7 blocks adhesion to one of these peptides, whereas sulfated glycoconjugates inhibit adhesion of cells to all three. Polyclonal antibodies raised against the peptides inhibit cell adhesion to the peptides, the recombinant CBD, and to intact TS. The peptides GRGDSP and VTCG are not inhibitory. These sites are thus independent from the type I repeats and the RGDA sequence of TS. Each of the active peptides inhibits cell attachment to the other active peptides as well as to the CBD and to intact TS. This mutual inhibition suggests that the peptides share a common cellular receptor which may contain an associated glycoconjugate chain. These data indicate that the COOH-terminal cell binding domain of TS contains at least two peptide sequences which contribute to the attachment of a wide variety of cells.  相似文献   

2.
Thrombospondin (TS) is a modular adhesive glycoprotein that contains three domains previously implicated in the attachment of cells to TS. These include the amino-terminal heparin-binding domain, the carboxy terminal cell or platelet-binding domain, and an RGDA sequence of TS. We have characterized a mAb against human TS, designated A4.1, which inhibits the attachment of human melanoma cells (G361) to TS. The epitope for A4.1 lies within the amino terminal half of the central stalklike region of TS which is distinct from the three known cell attachment sites. This region of TS is recovered in a 50-kD peptide after chymotryptic digestion of TS in EDTA. It contains the procollagen-like domain of TS as well as three type I repeats of a 60-residue segment homologous to two malarial proteins and the complement proteins properdin, and factors C6 through C9. The purified chymotryptic fragment is an effective attachment factor for G361 cells. A4.1 blocks adhesion to the 50-kD domain, as do some sulfated glycoconjugates. RGD (and RGE) peptides and mAbs against other domains of TS are not inhibitory. Peptides (19 mers) based on the core homology sequence of the three type I repeats of TS are potent attachment factors for these cells, and this adhesion is also inhibited by sulfated glycoconjugates. A polyclonal antibody raised against one of these peptides inhibits adhesion of G361 cells to the peptides, to the 50-kD fragment and to intact TS. Thus a new cell-adhesion site has been identified in TS whose sequence is very similar to the site identified in region II of the circumsporozoite protein of malaria parasites (Rich, K. A., F. W. George IV, J. L. Law, and W. J. Martin. 1990. Science (Wash. DC) 249:1574-1577. Thus there may be a common receptor which binds TS, malarial proteins, and properdin.  相似文献   

3.
Lymphocyte attachment to fibronectin is mainly mediated by the interaction of alpha 5 beta 1 and alpha 4 beta 1 integrins with the RGD and CS-1/Hep II sites, respectively. We have recently shown that the anti-beta 1 mAb TS2/16 can convert the partly active alpha 4 beta 1 present on certain hemopoietic cells that recognizes CS-1 but not Hep II, to a high avidity form that binds both ligands. In this report we have studied whether mAb TS2/16 also affects alpha 4 beta 1 ligand specificity. Incubation of the B cell lines Ramos and Daudi (which lack alpha 5 beta 1) with mAb TS2/16 induced specific attachment to an 80-kD fragment which lacks CS-1 and Hep II and contains the RGD sequence. mAbs anti-alpha 4 and the synthetic peptides CS-1 and IDAPS inhibited adhesion to the 80-kD fragment thus implying alpha 4 beta 1 as the receptor for this fragment. Interestingly, the synthetic peptide GRGDSPC and a 15-kD peptic fibronectin fragment containing the RGD sequence also inhibited B cell adhesion to the 80-kD fragment. Because we have previously shown that RGD peptides do not affect the constitutive function of alpha 4 beta 1, we tested whether TS2/16- activated alpha 4 beta 1 acquired the capacity to recognize RGD. Indeed RGD peptides inhibited TS2/16-treated B cell adhesion to a 38-kD fragment containing CS-1 and Hep II but did not affect binding of untreated cells to this fragment. An anti-fibronectin mAb reactive with an epitope on or near the RGD sequence also efficiently inhibited cell adhesion to the 80-kD fragment, indicating that the RGD sequence is a novel adhesive ligand for activated alpha 4 beta 1. These results emphasize the role of alpha 4 beta 1 as a receptor with different ligand specificities according to the activation state, a fact that may be important for lymphocyte migration, localization, and function.  相似文献   

4.
V Ginsburg  D D Roberts 《Biochimie》1988,70(11):1651-1659
The adhesive glycoproteins laminin, thrombospondin and von Willebrand's factor bind specifically and with high affinity to sulfated glycolipids, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The 3 proteins differ, however, in the effect of sulfated polysaccharides on their binding to sulfatides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand's factor, suggesting the involvement of laminin or thrombospondin or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed onto plastic promotes the attachment and spreading of G361 melanoma cells. Interestingly, fucoidan and an antibody directed against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed onto plastic also promote attachment and spreading of G361 melanoma cells. Direct adhesion of G361 cells requires high densities of sulfatide. In the presence of laminin, however, specific adhesion of G361 cells to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin mediates adhesion by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed onto the plastic. Although thrombospondin binds to sulfatide and to G361 cells, it does not enhance but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycoconjugates participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

5.
In this report we have studied the mechanism of human B lymphocyte adhesion to fibronectin and to proteolytic fragments of this protein. B cells adhered to fibronectin and to a 38-kDa fragment, derived from the A chain, containing the Hep II domain and most of the type III connecting segment, IIICS, of fibronectin. Cells did not bind to an 80-kDa fragment containing the RGD adhesive sequence of fibronectin. Attachment to fibronectin or to the 38-kDa fragment was not affected by the 80-kDa fragment, the GRGDSPC synthetic peptide, or by a mAb specific for the alpha chain of the RGD-dependent fibronectin receptor, alpha 5 beta 1. However, B cell adhesion to fibronectin was inhibited by the synthetic peptides CS-1, comprising the first 25 amino acids of IIICS and B12, containing the sequence LHGPEILDVPST of CS-1 (residues 14-25). Moreover, this sequence was shown to be sufficient to induce stable cell adhesion when coated on plastic surfaces. A mAb specific for the alpha-subunit of the alpha 4 beta 1 integrin, completely inhibited B cell attachment to B12, CS-1, 38 kDa, and fibronectin coated substrata. These data clearly indicate that adhesion of B lymphocytes to fibronectin is exclusively mediated by the interaction of alpha 4 beta 1 with residues 14-25 of the IIICS region in fibronectin. Therefore this interaction constitutes an alternative pathway of adhesion to fibronectin, independent of RGD and alpha 5 beta 1.  相似文献   

6.
Adhesive properties of tenascin-X (TN-X) were investigated using TN-X purified from bovine skin and recombinant proteins encompassing the RGD sequence located within the tenth fibronectin type-III domain, and the fibrinogen-like domain. Osteosarcoma (MG63) and bladder carcinoma cells (ECV304) cells were shown to adhere to purified TN-X, but did not spread and did not assemble actin stress fibers. Both cell types adhered to recombinant proteins harboring the contiguous fibronectin type-III domains 9 and 10 (FNX 9-10) but not to the FNX 10 domain alone. This adhesion to FNX 9-10 was shown to be mediated by alphavbeta3 integrin, was inhibited by RGD peptides and was strongly reduced in proteins mutated within the RGD site. As antibodies against alphavbeta3 integrin had no effects on cell adhesion to purified TN-X, we suggest that the RGD sequence is masked in intact TN-X. Cell attachment to the recombinant TN-X fibrinogen domain (FbgX) and to purified TN-X was greater for MG63 than for ECV304 cells. A beta1-containing integrin was shown to be involved in MG63 cell attachment to FbgX and to purified TN-X. Although the existence of other cell interaction sites is likely in this huge molecule, these similar patterns of adhesion and inhibition suggest that the fibrinogen domain might be a dominant site in the whole molecule.  相似文献   

7.
Tat, the transactivation factor of human immunodeficiency virus type 1 (HIV-1), contains the highly conserved tripeptide sequence Arg-Gly-Asp (RGD) that characterizes sites for integrin-mediated cell adhesion. The tat protein was assayed for cell attachment activity by measuring the adhesion of monocytic, T lymphocytic, and skeletal muscle-derived cell lines to tat-coated substratum. All cell lines tested bound to tat in a dose-dependent manner and the tat cell adhesion required the RGD sequence because tat mutants constructed to contain an RGE or KGE tripeptide sequence did not mediate efficient cell adhesion. The tat-mediated cell attachment also required divalent cations and an intact cytoskeleton. In addition, cell adhesion to tat was inhibited in the presence of an RGD-containing peptide GRGDSPK or an anti-tat mAb that recognizes the RGD epitope. These results strongly suggest that cells are bound to tat through an integrin. Interestingly, myoblast cells bound to tat remained round, whereas the same cells attached through an integrin for a matrix protein typically flatten and spread. The role of this RGD-dependent cellular adhesion of tat in HIV-1 infection remains to be determined.  相似文献   

8.
Human platelet thrombospondin adsorbed on plastic promotes attachment and spreading of human G361 melanoma cells. Attachment is rapid, and spreading is maximal by 90 min with 60-90% of the attached cells spread. In contrast, thrombospondin promotes attachment but not spreading of human C32 melanoma cells, which attach and spread only on laminin substrates. The specificity of these interactions and the regions of the thrombospondin molecule involved in attachment and spreading were examined using proteolytic fragments of thrombospondin and by inhibition studies. The sulfated fucan, fucoidan, and monoclonal antibody A2.5, which is directed against the heparin-binding domain of thrombospondin, selectively inhibit spreading but only weakly inhibit attachment. Monoclonal antibodies against some other domains of thrombospondin, however, are potent inhibitors of attachment. The amino-terminal heparin-binding domain of thrombospondin does not promote attachment. Large fragments lacking the heparin-binding domain support attachment but not spreading of G361 cells. Attachment activity is lost following removal of the 18-kD carboxyl-terminal domain. These results suggest that at least two melanoma ligands are involved in cell attachment and spreading on thrombospondin. The carboxyl-terminal region and perhaps other regions of the molecule bind to receptor(s) on the melanoma surface that promote initial attachment but not cell spreading. Interaction of the heparin-binding domain with sulfated glycoconjugates on melanoma surface proteoglycans and/or sulfated glycolipids mediates spreading. Monoclonal antibodies A2.5 and C6.7 also reverse spreading of G361 cells growing on glass culture substrates, suggesting that binding to thrombospondin mediates attachment of these melanoma cells in culture.  相似文献   

9.
Site-directed mutagenesis studies have suggested that additional peptide information in the central cell-binding domain of fibronectin besides the minimal Arg-Gly-Asp (RGD) sequence is required for its full adhesive activity. The nature of this second, synergistic site was analyzed further by protein chemical and immunological approaches using biological assays for adhesion, migration, and matrix assembly. Fragments derived from the cell-binding domain were coupled covalently to plates, and their specific molar activities in mediating BHK cell spreading were compared with that of intact fibronectin. A 37-kD fragment purified from chymotryptic digests of human plasma fibronectin had essentially the same specific molar activity as intact fibronectin. In contrast, other fragments such as an 11.5-kD fragment lacking NH2-terminal sequences of the 37-kD fragment had only poor spreading activity on a molar basis. Furthermore, in competitive inhibition assays of fibronectin-mediated cell spreading, the 37-kD fragment was approximately 325-fold more active than the GRGDS synthetic peptide on a molar basis. mAbs were produced using the 37-kD protein as an immunogen and their epitopes were characterized. Two separate mAbs, one binding close to the RGD site and the other to a site approximately 15 kD distant from the RGD site, individually inhibited BHK cell spreading on fibronectin by greater than 90%. In contrast, an antibody that bound between these two sites had minimal inhibitory activity. The antibodies found to be inhibitory in cell spreading assays for BHK cells also inhibited both fibronectin-mediated cell spreading and migration of human HT-1080 cells, functions which were also dependent on function of the alpha 5 beta 1 integrin (fibronectin receptor). Assembly of endogenously synthesized fibronectin into an extracellular matrix was not significantly inhibited by most of the anti-37-kD mAbs, but was strongly inhibited only by the antibodies binding close to the RGD site or the putative synergy site. These results indicate that a second site distant from the RGD site on fibronectin is crucial for its full biological activity in diverse functions dependent on the alpha 5 beta 1 fibronectin receptor. This site is mapped by mAbs closer to the RGD site than previously expected.  相似文献   

10.
Fibrinogen/fibrin and its proteolytic fragments serve as potential adhesive substrates during thrombosis, wound healing, and cancer. In this report we examined the biological response of human melanoma cells exposed to fibrinogen and its naturally occurring plasmic breakdown products that are known constituents of the tumor stroma. Plasmin treatment of fibrinogen first results in fragment X, which is characterized by removal of the COOH-terminal portion of the alpha chain including an RGD sequence (A alpha 572-575). Further digestion leads to fragment D comprising primarily an intact COOH-terminal stretch of the gamma chain containing the platelet adhesion sequence HHLGGAKQAGDV. In a sensitive adhesion assay M21 human melanoma cells utilized integrin alpha v beta 3 to attach to all three of these ligands. However, only intact fibrinogen promoted significant cell spreading, while fragment X produced minimal spreading and fragment D promoted only adhesion. These results indicate that fibrinogen contains at least two alpha v beta 3-dependent adhesive sites and these promote distinct biological responses of human melanoma cells. The differential functional properties of these ligands directly correlate to their relative binding affinity for purified alpha v beta 3 as measured in a solid-phase receptor binding assay. These results provide evidence that a single integrin can promote distinct biological signals depending on the molecular nature of the ligand binding event.  相似文献   

11.
Using mAb technology (Wayner, E. A., W. G. Carter, R. Piotrowicz, and T. J. Kunicki. 1988. J. Cell Biol. 107:1881-1891), we have identified a new fibronectin receptor that is identical to the integrin receptor alpha 4 beta 1. mAbs P3E3, P4C2, and P4G9 recognized epitopes on the alpha 4 subunit and completely inhibited the adhesion of peripheral blood and cultured T lymphocytes to a 38-kD tryptic fragment of plasma fibronectin containing the carboxy-terminal Heparin II domain and part of the type III connecting segment (IIICS). The ligand in IIICS for alpha 4 beta 1 was the CS-1 region previously defined as an adhesion site for melanoma cells. The functionally defined mAbs to alpha 4 partially inhibited T lymphocyte adhesion to intact plasma fibronectin and had no effect on their attachment to an 80-kD tryptic fragment containing the RGD (arg-gly-asp) adhesion sequence. mAbs (P1D6 and P1F8) to the previously described fibronectin receptor, alpha 5 beta 1, completely inhibited T lymphocyte adhesion to the 80-kD fragment but had no effect on their attachment to the 38-kD fragment or to CS-1. Both alpha 4 beta 1 and alpha 5 beta 1 localized to focal adhesions when fibroblasts that express these receptors were grown on fibronectin-coated surfaces. These findings demonstrated a specific interaction of both receptors with fibronectin at focal contacts. In conclusion, these findings show clearly that cultured T lymphocytes use two independent receptors during attachment to fibronectin and that (a) alpha 5 beta 1 is the receptor for the RGD containing cell adhesion domain, and (b) alpha 4 beta 1 is the receptor for a carboxy-terminal cell adhesion region containing the Heparin II and IIICS domains. Furthermore, these data also show that T lymphocytes express a clear preference for a region of molecular heterogeneity in IIICS (CS-1) generated by alternative splicing of fibronectin pre-mRNA and that alpha 4 beta 1 is the receptor for this adhesion site.  相似文献   

12.
EMILIN-1 (Elastin Microfibril Interface Located ProteIN), the prototype of the EMILIN family, consists of a cysteine-rich domain (EMI domain) at the N terminus, an extended region with a high potential coiled-coil structure, a short collagenous stalk, and a self-interacting globular gC1q-l domain. EMILIN-1 is an adhesive extracellular matrix constituent associated with elastic fibers, detected also in the proximity of cell surfaces. To localize the cell attachment site(s), monoclonal antibodies (mAbs) against EMILIN-1 or the gC1q-1 domain were used to inhibit cell attachment to EMILIN-1. Thus, one mAb mapping to the gC1q-1 domain caused complete inhibition of cell attachment. EMILIN-1 and gC1q-1 displayed a comparable dose-dependent ability to promote cell adhesion. Adhesion kinetics was similar to that of fibronectin (FN), reaching the maximum level of attachment at 20 min, but in the absence of cations adhesion was negligible. The relative adhesion strength to detach 50% of the cells was similar for EMILIN-1 and gC1q-1 (250-270 x g) but lower than that for FN (>500). Cell adhesion to EMILIN-1 or gC1q-1 was completely blocked by a function-blocking beta(1) integrin subunit mAb. In contrast, adhesion to the complement C1q component was totally unaffected. Among the various function-blocking mAbs against the alpha integrin subunits only the anti-alpha(4) fully abrogated cell adhesion to gC1q-1 and up to 70% to EMILIN-1. Furthermore, only K562 cells transfected with the alpha(4) integrin chain, but not wild type K562, were able to adhere to EMILIN-1 and were specifically inhibited by anti-alpha(4) function-blocking mAb. Finally, cells attached to EMILIN-1 or gC1q-1, compared with cells plated on FN or vitronectin, which appeared well spread out on the substrate with prominent stress fibers and focal contacts, were much smaller with wide ruffles and a different organization status of the actin cytoskeleton along the cell periphery. This pattern was in accord with the ability of EMILIN-1 to promote cell movement.  相似文献   

13.
Albolabrin, a 7.5-kDa cysteine-rich protein isolated from the venom of Trimeresurus albolabris, contains the arginine-glycine-aspartic acid (RGD) cell recognition sequence found in many cell adhesion-promoting extracellular matrix proteins, such as fibronectin and laminin. Albolabrin belongs to a family of RGD-containing peptides, termed disintegrins, recently isolated from the venom of various vipers and discovered to be potent inhibitors of both platelet aggregation and cell-substratum adhesion. Here we report that albolabrin inhibited the attachment of B16-F10 mouse melanoma cells to either fibronectin or laminin absorbed on plastic. When immobilized on plastic, albolabrin promoted B16-F10 melanoma cell attachment; this was inhibited by either RGD-serine (RGDS) or antibodies to integrins, suggesting that albolabrin binds via its RGD amino sequence to integrin receptors expressed on the melanoma cell surface. In an in vivo experimental metastasis system, albolabrin at a concentration of 300-600 nM inhibited C57BL/6 mouse lung colonization by tail vein-injected mouse melanoma cells and was at least 2000 times more active than RGDS in this assay. We propose that albolabrin inhibits tumor cell metastasis by inhibiting integrin-mediated attachment of melanoma cells to RGD-containing components of the extracellular matrix in the mouse lung.  相似文献   

14.
Osteopontin (OPN) is a secreted calcium-binding phosphoprotein produced in a variety of normal and pathological contexts, including tissue mineralization and cancer. OPN contains a conserved RGD (arg-gly-asp) amino acid sequence that has been implicated in binding of OPN to cell surface integrins. To determine whether the RGD sequence in OPN is required for adhesive and chemotactic functions, we have introduced two site-directed mutations in the RGD site of the mouse OPN cDNA, in which the RGD sequence was either deleted or mutated to RGE (arg-gly-glu). In order to test the effect of these mutations on OPN function, we expressed control and mutated mouse OPN in E. coli as recombinant glutathione-S-transferase (GST)-OPN fusion proteins. Control mouse GST-OPN was functional in cell adhesion assays, supporting attachment and spreading of mouse (malignant PAP2 ras-transformed NIH 3T3, and, to a lesser extent, normal NIH 3T3 fibroblasts) and human (MDA-MB-435 breast cancer, and normal gingival fibroblast) cells. In contrast, neither of the RGD-mutated OPN proteins (“delRGD” or “RGE”) supported adhesion of any of the cell lines, even when used at high concentrations or for long assay times. GRGDS (gly-arg-gly-asp-ser) peptides inhibited cell adhesion to intact GST-OPN, as well as to fibronectin and vitronectin. In chemotaxis assays, GST-OPN promoted directed cell migration of both malignant (PAP2, MDA-MB-435) and normal (gingival fibroblast, and NIH 3T3) cells, while RGD-mutated OPN proteins did not. Together these results suggest that the conserved RGD sequence in OPN is required for the majority of the protein's cell attachment and migration-stimulating functions.  相似文献   

15.
IgE FcR (FcERII) on human eosinophils was characterized and compared with FcERII present on B cells (CD23). Two mAb, BB10 (anti-eosinophil FcERII) and 135 (anti-CD23), bound to the major component of FcERII at 45,000 to 50,000 Mr, both on purified hypodense eosinophils and on a B cell line (WIL-2WT). The specific ligand, human myeloma IgE, was able to bind to the molecules immunoprecipitated by BB10. A cross-reactivity between BB10 and a mAb anti-Leishmania gp63, which is a "fibronectin (Fn)-like" molecule, containing the L-arginine-L-glycyl-L-aspartyl (RGD) cell attachment domain indicated the presence of such a sequence in the common structure present on eosinophil and B cell FcERII. The synthetic tetrapeptide RGDS as well as its inverted sequence (SDGR) reduced the binding of BB10 and anti-Fn mAb to eosinophils and B cells. Flow microfluorometry analysis revealed a variable binding of BB10 and anti-Fn mAb to eosinophils purified from different patients, results compatible with recent findings on the inducibility of FcERIIb. The significant inhibition of IgE-dependent cytotoxicity against parasite targets by preincubation of eosinophils with BB10, anti-Fn and anti-CD23 mAb, with anti-RGDS polyclonal antibodies or with the SDGR peptide suggested the requirement of this cell adhesion sequence for the function of low affinity FcERII. The presence of such a sequence in the C-terminal domain of B cell FcERII raised the possibility of its role in B cell adhesion or B cell growth.  相似文献   

16.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

17.
18.
Plasminogen activator inhibitor-1 (PAI-1) binds to the somatomedin B (SMB) domain of vitronectin. It inhibits the adhesion of U937 cells to vitronectin by competing with the urokinase receptor (uPAR; CD87) on these cells for binding to the same domain. Although the inhibitor also blocks integrin-mediated cell adhesion, the molecular basis of this effect is unclear. In this study, the effect of the inhibitor on the adhesion of a variety of cells (e.g., U937, MCF7, HT-1080, and HeLa) to vitronectin was assessed, and the importance of the SMB domain in these interactions was determined. Although PAI-1 blocked the adhesion of all of these cells to vitronectin-coated wells, it did not block adhesion to a variant of vitronectin which lacked the SMB domain. Interestingly, HT-1080 and U937 cells attached avidly to microtiter wells coated with purified recombinant SMB (which does not contain the RGD sequence), and this adhesion was again blocked by the inhibitor. These results affirm that PAI-1 can inhibit both uPAR- and integrin-mediated cell adhesion, and demonstrate that the SMB domain of vitronectin is required for these effects. They also show that multiple cell types can employ uPAR as an adhesion receptor. The use of purified recombinant SMB should help to further define this novel adhesive pathway, and to delineate its relationship with integrin-mediated adhesive events.  相似文献   

19.
alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.  相似文献   

20.
《The Journal of cell biology》1993,123(5):1279-1287
We have previously demonstrated that chemically modified thrombin preparations induce endothelial cell (EC) adhesion, spreading and cytoskeletal reorganization via an Arg-Gly-Asp (RGD) sequence and the alpha v beta 3 integrin. Native thrombin, however, did not exhibit adhesive properties, consistent with crystal structure analysis, showing that Gly-Asp residues of the RGD epitope are buried within the molecule. We have now identified a possible physiological mean of converting thrombin to an adhesive protein. Plasmin, the major end product of the fibrinolytic system, converted thrombin to an adhesive protein for EC in a time and dose-dependent manner. EC adhesion and spreading was also induced by a low molecular weight (approximately 3,000 D) cleavage fragment generated upon incubation of thrombin with plasmin. Cell adhesion mediated by this fragment was completely inhibited by the synthetic peptide GRGDSP. Conversion of thrombin to an adhesive molecule was significantly enhanced in the presence of heparin or heparan sulfate, while other glycosaminoglycans (GAGs) (e.g., dermatan sulfate, keratan sulfate, chondroitin sulfate) had no effect. The role of cell surface heparan sulfate in thrombin conversion to EC adhesive protein was investigated using CHO cell mutants defective in various aspects of GAG synthesis. Incubation of both thrombin and a suboptimal amount of plasmin on the surface of formaldehyde fixed wild- type CHO-KI cells resulted in an efficient conversion of thrombin to an adhesive molecule, as indicated by subsequent induction of EC attachment. In contrast, there was no effect to incubation of thrombin and plasmin with fixed CHO mutant cells lacking both heparan sulfate and chondroitin sulfate, or with cells expressing no heparan sulfate and a three-fold increase in chondroitin sulfate. A similar gain of adhesive properties was obtained upon incubation of thrombin and plasmin in contact with native, but not heparinase-treated extracellular matrix (ECM) produced by cultured ECs. It appears that cell surface and ECM-associated heparan sulfate modulate thrombin adhesive properties through its heparin binding site in a manner that enables suboptimal amounts of plasmin to expose the RGD domain. Our results demonstrate, for the first time, a significant modulation of thrombin molecule by heparin, resulting in its conversion to a potent adhesive protein for ECs. This conversion is most effective in contact with cell surfaces, basement membranes and ECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号