首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
In extensively washed rat cortical membranes [3H](+)-5-methyl-10,11-dihydro-5 H-dibenzo [a,d]cyclohepten-5,10-imine ([3H]MK-801) labeled a homogeneous set of sites (Bmax = 1.86 pmol/mg protein) with relatively low affinity (KD = 45 nM). L-Glutamate, glycine, and spermidine produced concentration-dependent increases in specific [3H]MK-801 binding due to a reduction in the KD of the radioligand. In the presence of high concentrations of L-glutamate, glycine, or spermidine, the KD values for [3H]MK-801 were reduced to 11 nM, 18 nM, and 15 nM, respectively. Maximally effective concentrations of combinations of the three compounds further increased [3H]MK-801 binding affinity as follows: L-glutamate + glycine, KD = 6.2 nM; L-glutamate + spermidine, KD = 2.2 nM; glycine + spermidine, KD = 8.3 nM. High concentrations of spermidine did not inhibit either [3H]glycine orf [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid binding to the N-methyl-D-aspartate (NMDA) receptor complex. The concentration of L-glutamate required to produce half-maximal enhancement (EC50) of [3H]MK-801 binding was reduced from 218 nM to 52 nM in the presence of 30 microM glycine and to 41 nM in the presence of 50 microM spermidine. The EC50 value for glycine enhancement of [3H]MK-801 binding was 184 nM. This was lowered to 47 nM in the presence of L-glutamate and to 59 nM in the presence of spermidine. Spermidine enhanced [3H]MK-801 binding with an EC50 value of 19.4 microM which was significantly reduced by high concentrations of L-glutamate (EC50 = 3.9 microM) or glycine (EC50 = 6.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The binding of L-[3H]glutamate to an isolated membrane preparation from crayfish tail muscle has been studied. The muscle homogenate was osmotically shocked, frozen and thawed, and thoroughly washed before incubation with L-[3H]glutamate. The preparation showed high specific binding of L-glutamate with a KD of 0.12 microM and Bmax of 4.7 pmol/mg protein measured in Tris/HCl pH 7.3 and at 4 degrees C. Nonspecific binding was 5-10% of total binding. The glutamate binding was highly stereospecific [K0.5 (D-glutamate), 270 microM] and showed a high degree of discrimination between L-glutamate and L-aspartate [K0.5 (L-aspartate), 54 microM]. In mammalian CNS preparations potent agonists of L-glutamate such as kainate and N-methyl-D-aspartate had no effect at 1 mM, and quisqualate was a weak inhibitor of L-glutamate binding [K0.5 (quisqualate), 162 microM]. Ibotenate was the most potent inhibitor [K0.5 (ibotenate), 0.27 microM], and various esters of L-glutamate were of intermediate potency as displacers of L-[3H]glutamate binding (K0.5 values from 6 to 60 microM). The glutamate binding site from crayfish muscle is clearly different from any of the subclasses of glutamate receptors in mammalian CNS. A possible physiological function of the binding site is a postsynaptic receptor for glutamate, either an extra-junctional or a junctional receptor.  相似文献   

3.
Solubilisation of a Glutamate Binding Protein from Rat Brain   总被引:2,自引:2,他引:0  
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   

4.
A glutamate binding protein was purified from bovine brain to apparent homogeneity. The procedure used for the purification of this protein involved extraction of a crude synaptic membrane fraction with Na-cholate, followed by solubilization of the binding protein from the membranes by Triton X-100, and, finally, affinity batch separation of the protein on L-glutamate-loaded glass fiber. The molecular characteristics of the purified protein were similar to those previously described for the glutamate binding protein from rat brain synaptic membranes and included the following: small Mr (14,000), acidic (pI = 4.7) protein with a single NH2-terminal amino acid (tyrosine), and significant absorption at wave-lengths greater than 300 nm. Complete amino acid analysis of the protein was not achieved, either because of destruction of some amino acids or of incomplete hydrolysis of the protein. The protein bound L-glutamate with high affinity (KD = 0.87 microM), exhibited one class of L-glutamate binding sites, and bound glutamate with a stoichiometry of 0.7 mol ligand/mol protein. The displacement of protein-bound L-glutamic acid by other neuroactive amino acids had characteristics similar to those observed for the displacement of L-glutamate from rat brain synaptic membrane or purified protein binding sites. Finally, the metal ligand formers KCN and NaN3 inhibited the activity of this protein just as they have been shown to do in rat brain synaptic membranes or the purified protein.  相似文献   

5.
The effects of Cl- and Ca2+ were studied on the specific binding of L-[3H]glutamate to multiple sites on rat hippocampal synaptic membranes. Quisqualate (5 microM) or DL-2-amino-4-phosphonobutyrate (2-APB) (300 microM) was used to discriminate two previously identified classes of binding sites. Saturation isotherms and displacement curves constructed under different ionic conditions suggested that the effects of Cl- and Ca2+ could best be explained by postulating the existence of three major binding site populations in this preparation rather than two. The binding of L-glutamate to Glu A sites exhibits an absolute dependence on Cl-, and Ca2+ markedly increases the maximum density of these sites. Glu A sites bind quisqualate and 2-APB with relatively high affinity. Cl- (47 mM) more than doubles the maximum density of Glu B sites, but Ca2+ appears to have no effect. Glu B sites can be discriminated from the other classes by their relatively low affinity for quisqualate and 2-APB. There is reason to think that the Glu B population is heterogeneous. The novel Glu C population can be virtually selectively labeled by exposing 2-APB-sensitive binding sites to radioligand in Tris-HOAc buffer with Ca2+. Binding of L-[3H]glutamate to these sites is enhanced by both Cl- and Ca2+, but requires neither ion. Ca2+ appears to increase both the affinity of Glu C sites for L-glutamate and their maximum binding site density. In the presence of Ca2+ and Cl-, Glu C sites bind the radioligand with micromolar affinity (KD approximately 2 microM) and high capacity (Bmax approximately 160 pmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
L-[3H]Glutamate binding sites were solubilized from porcine brain synaptic junctions by Triton X-114 in the presence of KCl. The solubilized binding sites bound L-[3H]glutamate reversibly with KD and Bmax values of 1.48 +/- 0.18 microM and 178.2 +/- 15.9 pmol/mg of protein, respectively. These binding sites appeared to be integral membrane glycoproteins, with sugar moieties recognized by wheat germ agglutinin. A 49.3-fold purification of these binding sites was achieved by Triton X-114 solubilization, anion-exchange chromatography, and affinity chromatography using wheat germ agglutinin-Sepharose. The apparent molecular mass of the partially purified binding sites was 620 +/- 50 kDa. L-[3H]Glutamate bound to the solubilized preparation could be effectively displaced by agonists of non-N-methyl-D-aspartate (NMDA) L-glutamate receptors but not by NMDA or alpha-amino-4-phosphonobutyrate. The rank order for the competitive ligands in displacing L-[3H]glutamate was: quisqualate greater than alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid greater than L-glutamate greater than kainate.  相似文献   

7.
K Koshiya 《Life sciences》1985,37(15):1373-1379
L-[3H]Glutamate binding sites were solubilized with a zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane-sulfonate (CHAPS) plus ammonium thiocyanate from guinea pig synaptosomal membranes. The binding of L-[3H]glutamate to the solubilized binding sites was saturable and reversible. Scatchard analysis suggested the existence of two different classes of binding sites with KDs of 63.8 and 644 nM. The L-[3H]glutamate binding was displaced by excitatory amino acids with such an order of potency that L-glutamate much greater than D-glutamate congruent to L-aspartate greater than D-aspartate. Quisqualate effectively displaced the glutamate binding in biphasic manner. L-Glutamic acid diethyl ester, the quisqualate receptor antagonist, also showed a moderate displacing ability. Other neuroactive amino acid analogues displaced the glutamate binding only weakly, except for L- and D-homocysteic acids which had moderate potency. It is very likely from these results that the glutamate binding sites solubilized in this study are relevant to the physiological glutamate receptors especially of quisqualate-type.  相似文献   

8.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

9.
The excitatory glutamate analogs quisqualate and ibotenate were employed to distinguish multiple binding sites for L-[3H]glutamate on freshly prepared hippocampal synaptic membranes. The fraction of bound radioligand that was displaceable by 5 microM quisqualate was termed GLU A binding. That which persisted in the presence of 5 microM quisqualate, but was displaceable by 100 microM ibotenate, was termed GLU B binding. GLU A binding equilibrated within 5 min and remained unchanged for up to 80 min. GLU B binding appeared to equilibrate at least as rapidly, but incubation with ligand unmasked latent binding sites. Saturation binding curves were best fitted by single exponentials, which yielded KD values of about 200 nM (GLU A) and 1 microM (GLU B). On the average, GLU B binding sites were about twice as abundant in these membranes as were GLU A sites. Rapid freezing of the membranes, followed by storage at -26 degrees C and rapid thawing markedly diminished GLU A binding, but nearly tripled GLU B binding. Both site bound L-glutamate with 10-30 times the affinity of D-glutamate. The GLU A site also bound L-glutamate with about 10 times the affinity of L-aspartate and discriminated poorly between L- and D-aspartate. In contrast, the GLU B site bound L-aspartate with an affinity similar to that for L-glutamate, and with an order-of-magnitude greater affinity than D-aspartate. The structural specificities of the GLU A and GLU B binding sites suggest that these sites may correspond to receptors on hippocampal pyramidal cell dendrites that are activated by iontophoretically applied L-glutamate.  相似文献   

10.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The total membrane fraction of human platelets was found to contain high affinity sites of L-[3H]glutamic acid binding (Kd = 100 nM, Bmax = 1.06 pmol/mg protein). The pH optimum for binding is at pH approximately 6.9 Na+ (1-150 mM) inhibit glutamate binding by platelet membranes (IC50 = 12 mM). Ca2+ (50-100 microM) stimulate the binding by 10-20% and inhibit it by 20-30% at concentrations of 1-5 mM. Monoclonal antibodies to the glutamate receptor strongly suppress the L-[3H]glutamate binding by platelet membranes (IC50 = 300 nm). The presence in human platelets of a glutamate-sensitive receptor complex similar to the central nervous system glutamate receptor is postulated.  相似文献   

12.
Binding activity of a putative central neurotransmitter, L-glutamic acid, was examined in the supernatant preparations solubilized from rat retinal membranes by Nonidet P-40. [3H]Glutamate binding activity increased linearly with increasing concentrations of the solubilized proteins up to 15 micrograms. The binding activity reached an equilibrium within 10 min at 2 degrees C, while increasing with incubation time up to 60 min at 30 degrees C. Addition of an excess of nonradioactive glutamate rapidly decreased the activity at 30 degrees C. Scatchard analysis revealed that the solubilized retinal binding activity consisted of a single component with a KD of 0.25 microM and a Bmax of 57.4 pmol/mg protein. The solubilized binding activity exhibited a stereospecificity and a structure selectivity to L-glutamate, and was abolished by quisqualate, L-glutamate diethyl ester, and DL-2-amino-3-phosphonopropionate. None of the other agonists and antagonists for the central excitatory amino acid receptors affected the binding activity. Reduction of incubation temperature from 30 degrees C to 2 degrees C resulted in a drastic attenuation of the binding activity due to decrement of the number of the apparent binding sites. Cation-exchange column chromatography revealed that unidentified radioactive material was in fact formed during the incubation of [3H]glutamate with the retinal preparations at 30 degrees C. These results suggest that retinal [3H]glutamate binding activity may be derived at least in part from the quisqualate-sensitive membranous enzyme with a stereospecific and structure-selective high affinity for the central neurotransmitter.  相似文献   

13.
We studied the properties of the N18-RE-105 neuronal cell line to determine if its glutamate binding site represents a neurotransmitter receptor. In immunocytochemical experiments, these cells stained strongly for neurofilament, but not for glial fibrillary acidic protein. In whole-cell patch clamp experiments, cells exhibited voltage-dependent Na+, Ca2+, and K+ currents characteristic of neurons. However, perfusion with L-glutamate or other excitatory amino acids did not evoke the inward current expected of a receptor/channel complex. In binding studies, the maximum accumulation of L-[3H]glutamate by washed membrane vesicles at 37 degrees C was 69 pmol/mg protein, and half-maximal accumulation occurred at 0.64 microM. This accumulation was blocked completely by quisqualate, partially by DL-2-amino-4-phosphonobutyric acid and L-cystine, but not at all by 1 mM kainate or N-methylaspartate. L-[3H]Glutamate accumulation was stimulated by Cl-, but reduced by Na+, 0.01% digitonin, or hyperosmotic (400 mM glucose) assay medium. The release of L-[3H]glutamate from vesicles was much faster in the presence of 100 microM unlabelled glutamate than 100 microM unlabelled quisqualate or DL-2-amino-4-phosphonobutyric acid. Thus, although N18-RE-105 cells possess many neuronal properties, the results obtained are not those expected from reversible binding of L-glutamate to a receptor/channel complex, but are consistent with a Cl- -stimulated sequestration or exchange process.  相似文献   

14.
Specific stereoselective binding of [3H]L-glutamate was detected to membranes prepared from housefly thorax to which were added several antiproteases. A single high affinity binding site was detected (KD 0.5 +/- 0.04 microM), but total binding varied from preparation to preparation (5-60 pmoles/mg protein). Specific binding was inhibited by preincubation of the membranes with trypsin, chymotrypsin or protease, or by exposure to 70 degrees C for 5 min. It was also inhibited by several compounds, the most potent being L-glutamate and L-aspartate, followed by L-glutamate diethylester, then D-glutamate, N-methyl-D-aspartate and ibotenate. Quisqualate had little effect, while kainate, proctolin and D-aspartate had none. d-Tubocurarine stimulated [3H]L-glutamate binding. The data suggest that [3H]L-glutamate is binding to an L-glutamate receptor in housefly thoracic muscle membranes.  相似文献   

15.
M Klingenberg  I Mayer  A S Dahms 《Biochemistry》1984,23(11):2442-2449
The binding to the ADP/ATP carrier in mitochondrial membranes of the 3'-O-(dimethylamino)naphthoyl (DAN) derivatives of AMP, ADP, and ATP was quantitatively analyzed. The sidedness of the fluorescent type binding to the "m" side only was shown comparing the mitochondrial membranes in various stages of integrity and surface orientation. In particles displacement by bongkrekate (BKA) is direct, whereas in the case of carboxyatractylate (CAT) the requirement for ADP and ATP demonstrates the transition from the "m" to the "c" state. Quantitatively the "physical" binding of [3H]DAN-AMP and fluorescence are well correlated, allowing for a little nonfluorescent binding to the c side. For DAN-AMP KD is 1.6 microM, for DAN-ADP KD is 0.8 microM, and in the Hill plot a straight line with n = 1.25 is obtained. The maximum number of binding sites for [3H]DAN-AMP (1.5 mumol/g of protein) is about equal to the sites found for [3H]BKA if the unspecific binding of both ligands is differentiated by blocking carrier sites with CAT. [3H]CAT binding is somewhat lower in accordance with the limited access of CAT to inverted vesicles. ADP is able to decrease fluorescence only by about 35% at high concentrations (10 mM) whereas GDP has virtually no effect. With ADP, DAN-AMP binding decreases by 30% of the total binding sensitive to BKA. Binding to ATPase is low because of the absence of Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

17.
Quisqualate, a glutamate analogue, displaced L-[3H]glutamate binding in a biphasic manner, corresponding to "high-affinity" and "low-affinity" binding sites. High-affinity quisqualate sites were termed "quisqualate-sensitive L-[3H]glutamate" binding sites. Quisqualate-sensitive L-[3H]glutamate binding was regionally distributed, with the highest levels present in the cerebellar molecular layer. This binding was stimulated by millimolar concentrations of chloride and calcium. The stimulatory effects of calcium required the presence of chloride ions, whereas chloride's stimulatory effects did not require calcium. All of the L-[3H]glutamate binding stimulated by chloride/calcium was quisqualate sensitive and only weakly displaced by N-methyl-D-aspartate, L-aspartate, or kainate. At high concentrations (1 mM), the anion blockers 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid both reduced, by 41 and 43%, respectively, the stimulatory effects of chloride. At concentrations of 100 microM, kynurenate, L-aspartate, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and L-2-amino-4-phosphonobutyric acid (L-APB) failed to displace quisqualate-sensitive L-[3H]glutamate binding in the cerebellar molecular layer. In the presence of KSCN, however, 100 microM AMPA displaced 44% of binding. Quisqualate-sensitive L-[3H]glutamate binding was not sensitive to freezing, and, in contrast to other chloride- and calcium-dependent L-[3H]glutamate binding sites that have been reported, quisqualate-sensitive binding observed by autoradiography was enhanced at 4 degrees C compared with 37 degrees C. Quisqualate-sensitive L-[3H]glutamate binding likely represents binding to the subclass of postsynaptic neuronal glutamate receptors known as quisqualate receptors, rather than binding to previously described APB receptors, chloride-driven sequestration into vesicles, or binding to astrocytic membrane binding sites.  相似文献   

18.
The binding of L-[3H]glutamate to membranes from human temporal cortex was studied in the absence of Na+, Ca2+, and Cl- ions. Pharmacological characterisation revealed that approximately 35% of specific binding at 50 nM L-[3H]glutamate was sensitive to a combination of kainate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. The remaining approximately 65% of specific binding was to a single population of sites with a KD of 844 nM and a Bmax of 0.92 pmol/mg protein. The pharmacological characteristics were consistent with an interaction at the N-methyl-D-aspartate subclass of excitatory amino acid receptor. The inclusion of Cl- ions revealed additional glutamate binding; this was sensitive to quisqualate and DL-2-amino-4-phosphonobutyrate, but not to kainate, DL-2-amino-7-phosphonoheptanoate, or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid.  相似文献   

19.
Geographutoxin II (GTX II), a peptide toxin isolated from Conus geographus, inhibited [3H]saxitoxin binding to receptor sites associated with voltage-sensitive Na channels in rat skeletal muscle homogenates and rabbit T-tubular membranes with K0.5 values of 60 nM for homogenates and 35 nM for T-tubular membranes in close agreement with concentrations that block muscle contraction. Scatchard analysis of [3H]saxitoxin binding to T-tubular membranes gave values of KD = 9.3 nM and Bmax = 300 fmol/mg of protein and revealed a primarily competitive mode of inhibition of saxitoxin binding by GTX II. The calculated KD values for GTX II were 24 nM for T-tubules and 35 nM for homogenates, respectively. In rat brain synaptosomes, GTX II caused a similar inhibitory effect on [3H]saxitoxin binding at substantially higher concentrations (K0.5 = 2 microM). In contrast, binding of [3H]batrachotoxin A 20-alpha-benzoate and 125I-labeled scorpion toxin to receptor sites associated with Na channels in synaptosomes was not affected by GTX II at concentrations up to 10 microM. Furthermore, [3H]saxitoxin binding to membranes of rat superior cervical ganglion was only blocked 10% by GTX II at 10 microM. These results indicate that GTX II interacts competitively with saxitoxin in binding at neurotoxin receptor site 1 on the sodium channel in a highly tissue-specific manner. GTX II is the first polypeptide ligand for this receptor site and the first to discriminate between this site on nerve and adult muscle sodium channels.  相似文献   

20.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号