首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

2.
Five proline analogues were tested for inhibition of the growth of mature barley (Hordeum vulgare L.) embryos in sterile culture. Inhibition by all analogues was relieved by proline. Inhibition by trans-4-hydroxy-L-proline was relieved by low amounts of proline. Twenty thousand mature embryos were dissected from M2 seeds after sodium azide mutagenesis. Four plants (Rothamsted 5201, 6102, 6901, 6902) were selected with good growth on 4 mM trans-4-hydroxyproline. Properties of mutant R5201 were studied in detail. Selfed progeny of R5201 were all resistant to trans-4-hydroxyproline and also to L-thiazolidine-4-carboxylic acid and trans-3-hydroxy-L-proline but not L-azetidine-2-carboxylic acid. The content of soluble proline in progeny of R5201 was higher in leaves by a factor of up to six-fold. Proline content was measured in the soluble fraction of the terminal 20 mm of 4 d old plants subjected to severe water stress in 40% w/v polyethylene glycol. Leaves of the mutant contained more proline initially and accumulated proline morer rapidly than the parental leaves. As mutant leaves were larger and lost water more rapidly the greater increase in proline may have been caused by more severe water stress. Resistance to trans-4-hydroxyproline in R5201 was due to a single partially dominant nuclear gene.Abbreviations AZC L-azetidine-2-carboxylic acid - HYP trans-4-hydroxy-L-proline - ORN L-ornithine - CIT L-citrulline  相似文献   

3.
Lone, M. I., Kueh, J. S. H., Wyn Jones, R. G. and Bright, S.W. J. 1987. Influence of proline and glycinebetaine on salttolerance of cultured barley embryos.—J. exp. Bot. 38:479–490. The addition of exogenous proline and glycinebetaine to culturedbarley (Hordeum vulgare L. cv. Maris Mink) embryos increasedshoot elongation under saline conditions. Inhibition of shootelongation by NaCl was relieved by proline when plantlets weregrown in deep crystallizing dishes but not in Petri dishes whereshoots come into direct contact with the medium. The effectof proline could be related to a decrease in shoot Cland Na+ accumulation which was only observed in plantlets grownin crystallizing dishes. Proline but not betaine uptake intocultured plantlets was stimulated by NaCl while each organicsolute inhibited the endogenous synthesis of the other soluteunder salt stress. Comparison of the effects of exogenously supplied proline withenhanced endogenous proline accumulation in the mutant lineR5201 suggested that the increased proline accumulation in themutant is an order of magnitude too low to have a significantphysiological effect. The implications of the effect of prolineon ion transport, discrimination and accumulation are discussed. Key words: Salt tolerance, proline, ion transport, barley embryo culture  相似文献   

4.
A study was made of the absorption and metabolism of arginine-guanido-14C, citrulline-carbamyl-14C and ornithine 1-14C which had been applied to apple stem internodes by a perfusion technique at intervals throughout the year. The results showed that these amino acids were interconverted according to the Krebs-Henseleit cycle always in the direction arginine-ornithine-citrulline-arginine. In addition ornithine was degraded by another pathway with loss of CO2. This loss was particularly extensive during the period June to August when labelled proline and glutamic acid were also found. The evidence is consistent with the initial breakdown of ornithine taking place via glutamic semi-aldehyde.  相似文献   

5.
A catalase-deficient mutant (RPr 79/4) and the wild-type (cv. Maris Mink) barley (Hordeum vulgare L.) counterpart, were grown for 3 weeks in high CO2 (0.7%) and then transferred to air and ozone (120 nl 1?1) in the light and shade for a period of 4 days. Leaves and roots were analysed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and glutathione reductase (GR, EC 1.6.4.2) activities. CAT activity in the leaves of the RPr 79/4 catalase-deficient mutant was around 5-10% of that determined in Maris Mink, but in the roots, both genotypes contained approximately the same levels of activity. CAT activity in Maris Mink increased in the leaves after transferring plants from 0.7% CO2 to air or ozone, reaching a maximum of 5-fold, after 4 days in shade and ozone. For the catalase-deficient mutant, only small increases in CAT activity were observed in light/air and light/ozone treatments. In the roots, CAT activity decreased consistently in both genotypes, after plants were transferred from 0.7% CO2. The total soluble SOD activity in the leaves and roots of both genotypes increased after plants were transferred from 0.7% CO2. The analysis of SOD isolated from leaves following non-denaturing PAGE, revealed the presence of up to eight SOD isoenzymes classified as Mn-SOD or Cu/Zn-SODs; Fe-SOD was not detected. Significant changes in Mn- and Cu/Zn-SOD isoenzymes were observed; however, they could not account for the increase in total SOD activity. In leaves, GR activity also increased in Maris Mink and RPr 79/4, following transfer from 0.7% CO2; however, no constant pattern could be established, while in roots, GR activity was reduced after 4 days of the treatments. The data suggest that elevated CO2 decreases oxidative stress in barley leaves and that soluble CAT and SOD activities increased rapidly after plants were transferred from elevated CO2, irrespective of the treatment (light, shade, air or ozone).  相似文献   

6.
Proline-[14C] infiltrated into leaf disks of tobacco (Nicotiana tabacum cv BY-4) in the dark was converted to glutamic acid and then metabolized through the TCA cycle. A smaller amount of proline-[14C] was metabolized when the leaf disks were wilted than when turgid. During a 6 hr period following rehydration, disks converted a larger amount of proline-[14C] to oxidized products than when wilted, although the proline content of rehydrated disks had not declined. These results indicate that proline oxidation is inhibited by water stress.  相似文献   

7.

Plasma glutamate concentrations are constant despite dynamic changes in diets. Most likely, virtually all the dietary glutamate is metabolized in the gut. The present study investigated permeability and metabolism of dietary glutamate in a Caco-2 intestinal epithelial cell layer model by tracing the fate of [U-13C] or [15N]glutamate added to the apical medium. For comparison, several other labelled essential and non-essential amino acids were tested as well. Almost all the labelled glutamate in the apical medium (98% and 96% at 24 h of the culture, respectively) was incorporated in the cell layer, while it barely appeared at the basolateral side, indicating an almost complete utilization of glutamate. Indeed, the 13C was incorporated into alanine, proline, ornithine, and glutamine, and the 15N was incorporated into alanine, glutamine, ornithine, proline, branched chain amino acids and also found as ammonia indicative of oxidation. In contrast, substantial apical-to-basolateral transport of amino acids (8–85% of uptake) other than glutamate and aspartate was evident in studies using amino acid tracers labelled with 13C, 15N or D. These results suggest that the intestinal epithelial cell monolayer utilizes dietary glutamate which adds to maintaining glutamate homeostasis in the body.

  相似文献   

8.
9.
Incorporation of leucine and changes in different protein fractions have been studied during Sorghum grain development. Most of the label from the injected leucine-[14C] was found in glutelin and residue fraction towards later stages of maturity. The label in albumin, globulin and prolamin decreased with a concomitant increase in label in glutelin and residue proteins. The concentration of lysine, aspartic acid and glycine decreased while that of leucine, proline, alanine, tyrosine, phenylalanine, and cystine increased during grain development. Increase in serine, methionine, valine and isoleucine was only marginal. The proportion of glutamic acid was high at all stages of grain development. Glutelin fraction resolved into two peaks on gel chromatography, only one of which with higher MW was labelled, while in albumin both the peaks were found to be labelled. Tannin content also increased during grain development.  相似文献   

10.
A barley mutant RPr84/90 has been isolated by selecting for plants which grow poorly in natural air, but normally in air enriched to 0.8% CO2. After 5 minutes of photosynthesis in air containing14CO2 this mutant incorporated 26% of the14C carbon into phosphoglycollate, a compound not normally labelled in wild type (cv. Maris Mink) leaves.The activity of phosphoglycollate phosphatase (EC 3.1.1.18) was 1.2 nkat mg–1 protein at 30°C in RPr 84/90 compared to 19.2 nkat mg–1 protein in the wild-type leaves. Phosphoglycollate phosphatase activity was not detected after protein separation by electrophoresis of leaf extracts from the mutant on polyacrylamide gels; on linear 5% acrylamide gels three bands with enzyme activity were separated from extracts of wild type plants. Gradient gel electrophoresis followed by activity staining showed two bands in Maris Mink tracks of MW 86,000 and 96,000, but no bands in 84/90. This is the first report of isozymes of phosphoglycollate phosphatase in barley which were absent in the mutant extracts. Our results confirm an earlier report of isozymes of this phosphatase in Phaseolus vulgaris [18].The photosynthetic rate of RPr 84/90 in 1% O2, 350 l CO2 l–1 was 9–12 mg CO2 dm–2 h–1 at 20°C, whereas the wild-type rate was 27–29 mg CO2 dm–2 h–1 at 20°C. In 21% O2, 350 l CO2 l–1 the rate was 2–3 mg CO2 dm–2 h–1 in the mutant and 20 mg CO2 dm–2 h–1 in the wild type.Genetic analysis has shown that the mutation segregates as a single recessive nuclear gene.  相似文献   

11.
l-[U-14C]aspartate, l-[U-14C]asparagine, and l-[U-14C]arginine were administered luminally into isolated segments of rat jejunum in situ, and the radioactive products appearing in venous blood from the segment were identified and quantified, in a continuation of similar studies with l-glutamate and l-glutamine (Windmueller H.G. and Spaeth, A. E. (1975) Arch. Biochem. Biophys. 171, 662–672). Aspartate, administered alone (6 mm) or with 18 other amino acids plus glucose, was absorbed more rapidly than glutamate, but, as with glutamate, less than 1% was recovered intact in intestinal venous blood. More than 50% of aspartate carbon was recovered in CO2, 24% in organic acids, mostly lactate, 12% in other amino acids (alanine, glutamate, proline, ornithine, and citrulline), and 10% in glucose, apparently the first demonstration of gluconeogenesis by intestine in vivo. In contrast to aspartate and glutamine, nearly all asparagine was absorbed intact, less than 1% being catabolized. About 4% of the absorbed dose was incorporated into the acid-insoluble fraction of intestine, as was the case with all the amino acids studied. In conventional or germ-free rats, only 60% of arginine was absorbed intact, while 33% was hydrolyzed to ornithine and urea. The urea and 38% of the ornithine were released into the blood; the remaining ornithine was metabolized further by intestine to citrulline, proline, glutamate, organic acids, and CO2. Catabolism of several amino acids from the lumen plus glutamine from arterial blood may provide an important energy source in small intestine.  相似文献   

12.
The effects of L-azetidine 2-carboxylic acid on growth and proline metabolism in a proline-requiring auxotroph of Escherichia coli are described. The homologue inhibited growth of the wild type and it, alone, did not substitute effectively for proline as a growth supplement for the mutant. In medium containing 0.05 mM proline, the addition of increasing amounts of homologue progressively inhibited growth of the wild type but stimulated growth of the mutant at homologue: proline ratios of 10 : 1 and 50 : 1. This suggested that the homologue exerted a “sparing effect” on proline in the mutant.The incorporation of L-[U-14C]proline and L-[3H]azetidine 2-carboxylic acid into hot trichloroacetic acid-insoluble material in the mutant was measured. Amino acid analysis of the insoluble material from cells incubated with radiolabeled proline alone revealed that proline was partially degraded and metabolized to other amino acids prior to incorporation into protein. The addition of unlabeled homologue to the incubation medium significantly reduced proline catabolism, suggesting that the homologue exerted a sparing effect on proline in this mutant. In medium containing unlabeled proline and radiolabeled L-azetidine 2-carboxylic acid, the homologuewas incorporated both intact and partially degraded prior to incorporation into protein. Alanine was the major L-azetidine 2-carboxylic acid catabolite.  相似文献   

13.
14.
Proline [U-14C] was fed to shoots of intact Tagetes patula grown normally, on horizontal clinostats, or on vertical clinostats rotating at 15 rev/hr. After various periods the incorporation of 14C into salt-extractable material from the cell walls of stems, petioles, leaves and flowers was determined. The cell walls of the gravity-compensated plants (grown on horizontal clinostats) has the highest amount of salt-extractable radioactivity. A 2- to 9-fold increase was observed in comparison to either the normal or vertical clinostat plant controls. Some physico-chemical properties of the salt-extractable fraction suggest that it consists of highly charged, low MW entities, possibly short chain peptides. On acid hydrolysis this material yields radioactive aspartic acid, glutamic acid and proline. The presence of labelled hydroxyproline is suggested. After acid hydrolysis of the cell walls of leaves, it was found that ca 4 times the amount of 14C was incorporated in the hypogravity-grown plant compared to the controls. It appears likely that extensibility changes in tissues under simulated hypogravity required additional cell wall protein.  相似文献   

15.
16.
1. The isolated microsome fraction of regenerating rat liver was incubated with cell sap, a source of energy and [35S]methionine, [14C]isoleucine or [14C]leucine for different periods of time, and microsomal albumin isolated. 2. The distribution of these isotopes in albumin was determined by separation of tryptic peptides from the protein. Radioactivity was measured in peptides either qualitatively by radioautography or quantitatively by labelling with both 3H and 14C. 3. A gradient of radioactivity existed at all times in albumin isolated after incubating microsomes. 4. The shorter the incubation time the fewer the peptides labelled in albumin, but the peptides with highest specific activity after short incubation times corresponded to those with highest specific activities after long incubation times. 5. Leucine released from the C-terminus of albumin had a higher specific activity than the mean specific activity of the remaining leucine residues in albumin. 6. The peptide with the highest specific activity in albumin is probably derived from the C-terminus of the protein. 7. [14C]Glutamic acid is incorporated into the N-terminus of albumin after incubating the microsome fraction with this isotopically labelled amino acid, cell sap and a source of energy. The specific activity of the N-terminal glutamic acid under these conditions is less than the mean specific activity of the remaining glutamic acid and glutamine residues in albumin. 8. The results are interpreted as reflecting a sequential synthesis of serum albumin in the isolated microsome fraction of rat liver. The direction of synthesis of albumin is from the N-terminus towards the C-terminus. 9. The bulk of incorporation of radioactive amino acid into albumin in the isolated microsome fraction is due to completion of partially completed, pre-existing peptide and polypeptide chains. A limited synthesis of new chains of albumin does, however, occur.  相似文献   

17.
A soluble enzyme which converts proline to glutamic acid using NAD as coenzyme was isolated from young prothallia and spores of the fern Anemia phyllitidis. The purification was about 36-fold. The pH optimum is between 10·2 and 10·7; the Km for proline is 4·6 × 10−4 M and for NAD 3·4 × 10−4 M. There are no multiple forms of this enzyme, as proved by gel electrophoresis.  相似文献   

18.
1. Lactating mammary glands of sheep were perfused for several hours in the presence of dl-[2-(14)C]ornithine or dl-[5-(14)C]arginine and received adequate quantities of acetate, glucose and amino acids. 2. In the [(14)C]ornithine experiment 1.4% of the casein and 1% of the expired carbon dioxide came from added ornithine; 96% of the total radioactivity in casein was recovered in proline; 13% of the proline of casein originated from plasma ornithine. 3. In this experiment the results of chemical degradation of proline of casein as well as relative specific activities in the isolated products are consistent with the view that ornithine is metabolized, by way of glutamic gamma-semialdehyde, to proline or glutamic acid. 4. In the [(14)C]arginine experiments 3% of the casein and 1% of the expired carbon dioxide came from arginine; 84% of the arginine and 9% of the proline of casein originated from plasma arginine. 5. In these experiments the relative specific activities of arginine, ornithine and proline in plasma are in agreement with the view that arginine is metabolized by way of ornithine to proline. The conversion of arginine into ornithine is probably catalysed by arginase, so that arginase in mammary tissue may be involved in the process of milk synthesis.  相似文献   

19.
The plasma membrane of Candida utilis cells was rapidly disrupted by a small dose of DEAE-dextran. The vacuolar membranes, in contrast, remained intact under isotonic conditions. Therefore, the cytosolic pool could be extracted in a first step, and in a second step, after disruption of the vacuoles, the vacuolar pool. The two extracts were studied in cells grown on different nitrogen sources, namely ammonium, arginine, ornithine, citrulline, glycine, and proline.The amount of soluble amino acids in Candida cells varies considerably depending on the nitrogen source. This is largely caused by the variation in size of the vacuolar pool (0.8–2.4 mmol per g protein) containing nearly all nitrogen-rich amino acids such as arginine and ornithine, whereas the size of the cytoplasmic pool, holding most of the glutamic acid, is fairly constant (1.3 mmol per g protein). Upon nitrogen starvation the vacuolar pool was reduced much more than the cytosolic pool. A storage and buffer function of the vacuolar pool was also indicated by the much slower turnover of the vacuolar than of the cytosolic glutamine in an isotope labelling experiment. Potassium, sodium, orthophosphate, ATP, and other substances absorbing at 260 nm were found predominantly in the cytosolic extracts. Extraction of uniformly 14C-labelled cells showed that the total soluble pool of the cells contained about 10% of the total carbon. Of this about 45% was in the vacuolar the rest in the cytosolic extract. The labelled extracts were further characterized by ion exchange chromatography.Non-Standard Abbreviations DEAE-dextran diethylaminoethyl-dextran - MES 2-(N-morpholino)ethane sulfonic acid - PIPES piperazine-N,N-bis-2-ethane sulfonic acid - c-extract cytosolic extract - v-extract vacuolar extract  相似文献   

20.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号