首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang CY  Adams DO 《Plant physiology》1982,69(2):424-427
1-Aminocyclopropane-1-carboxylic acid (ACC) level, ACC synthase activity, and ethylene production in cucumbers (Cucumis sativus L.) remain low while the fruit are held at a temperature which causes chilling injury (2.5°C) and increase rapidly only upon transfer to warmer temperatures. The increase in ACC synthase activity during the warming period is inhibited by cycloheximide but not cordycepin or α-amanitin. Our data indicate that the synthesis of ACC synthase, which results in increased ACC levels and accelerated ethylene production, occurs only upon warming, possibly from a message produced or unmasked during the chilling period. Ethylene production by chilled (2.5°C) cucumbers increased very little upon transfer to 25°C if the fruit were chilled for more than 4 days. The fruit held for 4 days or longer showed a large increase in ACC levels but little ethylene production even in the presence of exogenous ACC. This suggests that the system which converts ACC to ethylene is damaged by prolonged exposure to the chilling temperature. Cucumbers stored at a low but nonchilling temperature (13°C) showed very little change in ACC level, ethylene production, or ACC synthase activity even after transfer to 25°C.  相似文献   

2.
3.
Cucumber ( Cucumis sativus L. cv. Victory) seedlings were exposed to chilling at 5°C and endogenous levels of polyamines and 1-aminocyclopropane-1-carboxylic acid (ACC) were measured after chilling and after warming at 20°C. The level of spermidine was higher in the chilled seedlings than in the non-chilled seedlings. Treatment with a plant bioregulator, (2RS,3RS)-1-(4-cholorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol), reduced the chilling injury and the levels of spermidine in the chilled seedlings. The levels of ACC and production of ethylene showed sharp increases after warming following exposure to chilling. These increases were suppressed by the application of aminooxyacetic acid (AOA). However, AOA treatment did not reduce chilling injury or affect the levels of polyamines in the tissue. These data indicate that the increase in ACC and ethylene is a response of the tissue to the chilling exposure and is not a cause of the injury. The data also suggest that the syntheses of polyamines and ethylene are not competitive with each other even under chilling stress conditions.  相似文献   

4.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

5.
Lipid composition and pigment content in bell pepper ( Capsicum annuum L. cv. Bell Tower) fruit that were freshly harvested, chilled 14 days at 2° C. or chilled and then transferred to 20 °C for 3 days ("rewarmed") were determined. There was slight to moderate loss of membrane glycerolipids during chilling, with much greater losses after chilled fruit was rewarmed. Galactolipid (GL) loss exceeded that of phospholipid (PL). The ratio of monogalactosyl -to digalactosyl-diacylglycerol did not change in chilled or in rewarmed fruit, and there was no chlorophyll loss, but the amount of neutral carotenes declined during chilling and dropped further alter rewarming. Only minor changes in total membrane sterols (TMS = free sterols + steryl glycosides + acylated steryl glycosides) were noted in chilled and in rewarmed fruit (a small increase followed by a small decrease), but major changes occurred in sterol glycosylation and esterification. The ratio of stigmasterol to sitosterol increased during chilling and rose further after rewarming. Due to PL loss, the ratios of TMS and free sterols to PL increased in rewarmed fruit. The ratio of linolenate (18:3) to linoleate (18:2) rose during chilling and after rewarming in all fatty-acyl lipids (GL. PL. and acylated steryl glycosides), but the unsaturation index increased only in GL. These results indicate that most membrane damage occurs after rewarming of chilled fruit and that the chloroplasts are especially chilling sensitive.  相似文献   

6.
Heat shock increases chilling tolerance of mung bean hypocotyl tissue   总被引:5,自引:0,他引:5  
The effects of heat shock on the chilling tolerance of mung bean [Vigna radiata (L.) Wilczek] seedling tissue were studied by using two measurements of chilling injury: increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity and solute leakage. ACC oxidase activity (measured as ACC-induced ethylene production) of freshly excised mung bean hypocotyl segments was highly dependent on the temperature at which the seedlings were grown. However, this highly temperature-dependent level of ACC oxidase activity was probably a wound response since it was almost entirely eliminated by incubating the excised segments at 20°C for 3 h. In contrast, heating of excised segments to 40°C for up to 4 h resulted in a time-dependent increase in ACC oxidase activity which was sensitive to cycloheximide, indicating rapid protein synthesis during the heat treatment. ACC oxidase activity fell sharply during subsequent chilling at 2. 5°C. After 3 days of chilling, all treated segments, regardless of their initial ACC oxidase activity, showed a decline to the same low activity level and ACC oxidase activity continued to fall slowly for up to 9 days at 2. 5°C. Hypocotyl segments excised from seedlings held at 15°C showed no change in solute leakage, but leakage increased rapidly when seedlings were either chilled at 2. 5°C or heated to 32°C (just below the heat shock temperature). Chill-induced leakage from non-heat-shocked segments increased steadily with chilling duration and was unaffected by cycloheximide concentration up to day 6. Within the elevated rate of leakage on day 9, however, leakage was lower from segments exposed to 10 and 50 μM cycloheximide. Solute leakage was markedly reduced for up to 9 days when segments were heat shocked at 40°C for 3 or 4 h with or without 10 M cycloheximide, but the presence of 50 μM cycloheximide caused an initial doubling of solute leakage and a 3-fold increase after 3 days of chilling. Cycloheximide prevented formation of heat shock protection against chilling from the start at 50 μM and after 9 days at 10 μM. These results indicate that the protection afforded by heat shock against chilling damage is quantitative and probably involves protein synthesis.  相似文献   

7.
Non-cellulosic neutral sugar composition of cell walls from seventeen fruit types were analysed during ripening. Galactose was the major non-cellulosic neutral sugar in cell walls of cucurbit and solanaceous fruit, xylose was the predominant non-cellulosic neutral component of berries, and arabinose was the major non-cellulosic component of pome fruits. The major non-cellulosic neutral sugar residue in cell walls of stone fruits varied. In nectarine and peach, plum, and apricot, the major sugar was arabinose, galactose, and xylose, respectively. In 15 of the 17 types of fruit, a net loss of non-cellulosic neutral sugar residues occurred during ripening. No net loss occurred in plums and cucumbers. A net loss of cell wall galactose and/or arabinose occurred in 14 of the types of fruit. Xylose was the major neutral sugar residue lost from walls of apricot during ripening. In general, berry cell walls were comparatively low in galactose and arabinose content.  相似文献   

8.
A large increase in the activity of an enzyme involved in chlorogenic acid metabolism, hydroxycinnamyltransferase occurs in tomatoes stored at low temperatures. In contrast, the activity of the enzyme remains constant or falls slightly during normal ripening at 20°. The rise in activity occurs at temperatures below 10° and fails to occur at 15° or 20°. This increase in activity during low temperature storage occurs with fruit at all stages of ripening from mature green to fully ripe. The hydroxycinnamyltransferase of chilled tomatoes falls rapidly on transfer to 20° with a lag of about 4–8 hr and within 48 hr returns to that of unchilled fruit. The effects of such warming treatments are reversible since when a chilling period is resumed following warming to 20°, the rise in hydroxycinnamyltransferase activity is also resumed. Of the 5 other enzymes of phenylpropanoid metabolism studied, only PAL shows a similar increase in activity during low temperature storage although the activity of the other enzymes was maintained at higher levels in fruit at 2° than at 20°. The possible relationship between the behaviour of hydroxycinnamyltransferase activity at various temperatures and the known susceptibility of tomatoes to chilling injury is discussed.  相似文献   

9.
Mature green tomato fruit ( Lycopersicon esculentum cv. Caruso) were stored at 1°C or 20°C and analyzed on day 0, 18 and 22 for electrolyte leakage, ripening-associated changes in pigmentation and phospholipid fatty acid composition. Chilled fruit were also analyzed 4 days after they were returned to 20°C. Fruit did not ripen significantly during chilling and subsequent storage at 20°C, and showed visible chilling injury symptoms only at 20°C. Electrolyte leakage increased in control and chilled fruit, indicating enhanced membrane permeability during both ripening and chilling. Returning the fruit to ambient temperature gave an apparent decrease in electrolyte leakage. Phospholipid and linolenic acid content and double bond index decreased during ripening at 20°C. The small changes in phospholipid fatty acid composition during chilling cannot account for the enhanced membrane permeability. The significant decrease in percentage of linolenic acid and in double bond index in the total lipids, but not in the phospholipids, upon returning the fruit to 20°C suggests loss of galactolipid polyunsaturated fatty acids  相似文献   

10.
Chilling whole cucumber seedlings that had 10‐mm long radicles for 4 days at 2.5°C significantly inhibited subsequent radicle growth both by increasing the time it took the seedlings to recover from chilling and attain a linear rate of radicle growth, and by decreasing the subsequent rate of linear growth. Exposing cucumber seedlings to 45°C for up to 20 min had no effect on subsequent radicle growth, while longer exposures produced reductions in growth. A heat shock at 45°C for 10 min induced the optimal protection to 4 days of chilling at 2.5°C by reducing chilling inhibition from 60 to 42%. Two hours after being chilled, heat shocked or heat shocked and then chilled, there was no difference in protein content of the apical 1 cm of the seedling radicle among these treatments and the non‐heat shocked, non‐chilled control. Two days after treatment, the protein content was still similar in tissue that had been heat shocked or heat shocked and chilled, while it was significantly reduced in tissue that had been chilled. In general, 2 h after treatment, the activity of the 5 antioxidant enzymes examined in this study [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), guaiacol peroxidase (GPX; EC 1.11.1.7) and glutathione reductase (GR; EC 1.6.4.2)] were reduced by chilling and unaffected or increased by heat shock. When heat shock was followed by chilling, there was a consistent effect of the heat shock treatment on preventing the loss of enzyme activity following chilling. This protective effect of the heat shock treatment was even more pronounced after 2 days of recovery at 25°C for SOD, CAT and APX. In contrast, the activity of GR and GPX was substantially higher in chilled tissue than in tissue that had been heat shocked before being chilled. Elevated levels of GR and GPX therefore appear to be correlated with the development of chilling injury, while elevated levels of SOD, CAT and APX appear to be correlated with the development of heat shock‐induced chilling tolerance.  相似文献   

11.
Softening of mango fruit has been investigated by analysis of ripening related changes in the composition of the fruit cell walls. There is an apparent overall loss of galactosyl and deoxyhexosyl residues during ripening, the latter indicating degradation of the pectin component of the wall. The loss of galactose appears to be restricted to the chelator soluble fraction of the wall pectin, whilst loss of deoxyhexose seems to be more evenly distributed amongst the pectin. The chelator soluble pectin fraction is progressively depolymerised and becomes more polydisperse during ripening. These changes are similar to those occurring in other fruit and are related to the action of wall hydrolases during ripening.  相似文献   

12.
The physiological changes in green bananas (cv. Sin-zun), which are very sensitive to chilling injury, were studied during and after exposure to low temperatures (4±1°C, 6±0.5°C) for various periods. While the fruits injured by chilling did not fail to produce CO2 and ethylene, the pattern of both CO2- and ethylene production in these chilled fruits (9 and 15 days at 6°C) after transfer to 20°C was not normal. The contents of acetaldehyde and ethanol in chilled fruits, both in peels and pulps, increased with the advance of chilling, injury. There was an accumulation of α-keto acids in the peels of chilled fruits. Only half the conversion of 14C (fed as succinic acid-1, 4-14C) to citric acid and isocitric acid was observed in chilled tissues as compared with healthy ones; the activity of citrate synthase in banana peels appears therefore to be inhibited by chilling injury. A histological study of the tissues showed that the browning substances (polyphenols) present in chilled fruits accumulate around the vascular tissues.  相似文献   

13.
Wang CY  Adams DO 《Plant physiology》1980,66(5):841-843
Chilling at 2.5 C accelerated the synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and C(2)H(4) production in cucumber fruit. Skin tissue contained higher levels of ACC and was more sensitive to chilling than was cortex tissue. Accumulation of ACC in chilled tissue was detected after 1 day of chilling and remained elevated even after C(2)H(4) production started to decline. These data suggest that ACC synthesis is readily stimulated by chilling, whereas the system that converts ACC to C(2)H(4) is vulnerable to chilling injury. Chilling-induced C(2)H(4) production was inhibited by amino-ethoxyvinylglycine, sodium benzoate, propyl gallate, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and cycloheximide. The utilization of methionine for ACC formation and chilling-induced C(2)H(4) biosynthesis was established using l-[3,4-(14)C]methionine. Chilled tissue had a higher capacity to convert l-[3,4-(14)C]methionine to ACC and C(2)H(4) than did nonchilled tissue.  相似文献   

14.
Prior temperature exposure affects subsequent chilling sensitivity   总被引:5,自引:0,他引:5  
The chilling sensitivity of small discs or segments of tissue excised from chillingsensitive species was significantly altered by prior temperature exposure subsequent to holding the tissue at chilling temperatures as measured by a number of physiological processes sensitive to chilling. This temperature conditioning was reversible by an additional temperature exposure before chilling, and mature-green and red-ripe tomato tissue exhibit similar chilling sensitivities. Exposing pericarp discs excised from tomato fruit (Lycopersicon esculentum Mill. cv. Castelmart), a chilling-sensitive species, to temperatures from 0 to 37°C for 6 h before chilling the discs at 2.5°C for 4 days significantly altered the rate of ion leakage from the discs, but had no effect on the rate of ion leakage before chilling and only a minimal effect on discs held at a non-chilling temperature of 12°C. Exposing chillingsensitive tissue to temperatures below that required to induce heat-shock proteins but above 20°C significantly increased chilling sensitivity as compared to tissue exposed to temperatures between 10 and 20°C. Rates of ion leakage after 4 days of chilling at 2.5°C were higher from fruit and vegetative tissue of chilling-sensitive species (Cucumis sativus L. cv. Poinsett 76, and Cucurbita pepo L. cv. Young Beauty) that were previously exposed for 6 h to 32°C than from similar tissue exposed to 12°C. Exposure to 32 and 12°C had no effect on the rate of ion leakage from fruit tissue of chilling tolerant species (Malus domestica Borkh. cv. Golden Delicious, Pyrus communis L. cv. Bartlett). Ethylene and CO2 production were higher and lycopene synthesis was lower in chilled tomato pericarp discs that were previously exposed for 6 h to 32°C than the values from tissue exposed to 12°C for 6 h before chilling. Increased chilling sensitivity induced by a 6 h exposure to 32°C could be reversed by subsequent exposure to 12°C for 6 h.  相似文献   

15.
Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the release of uronides by polygalacturonase from all pectinesterase treated cell walls was equivalent to polygalacturonase treatment of walls at the ripe stage. Uronide polymers released by polygalacturonase contain galacturonic acid, rhamnose, galactose, arabinose, xylose, and glucose. As a function of development, an increase in the release of galacturonic acid and rhamnose was observed (40 and 6% of these polymers at the mature green stage to 54 and 15% at the red ripe stage, respectively). The amount of galactose and arabinose released by exogenous polygalacturonase decreased during development (41 and 11% from walls of mature green fruit to 11 and 6% at the red ripe stage, respectively). Minor amounts of glucose and xylose released from the wall by exogenous polygalacturonase (4-7%) remained constant throughout fruit development.  相似文献   

16.
Papaya is a climacteric fruit in which ripening is greatly regulated by ethylene often associated with stress responses such as wounding. The changes in cell wall compositions in papaya fruit at an advanced stage of ripening under stress conditions including chilling temperature of 5°C and wounding employed as fresh-cut and how these changes were affected by an ethylene action inhibitor of 1-methylcyclopropopene (1-MCP) were examined in the study. The recovery of ethanol-insoluble solids, total soluble sugars, water-soluble polyuronides, neutral hemicelluloses, and neutral sugars of rhamnose, arabinose, mannose and glucose were not affected by 1-MCP or fresh-cut processing. The fresh-cut processing, however, caused a higher loss of total polyuronides and the neutral sugar galactose while increasing the recovery of chelator-soluble polyuronides. Few significant differences due to 1-MCP application were recorded in the recoveries of alkali-soluble polyuronides, hemicellulosic polyuronides extracted with 4% KOH, and the neutral sugar xylose. Modifications of cell wall polyuronides and hemicelluloses in ripe fresh-cut papaya fruit exhibited mostly similar patterns to those in intact ripe papaya fruit under the chilling temperature of 5°C while minimally affected by 1-MCP.  相似文献   

17.
M. Knee 《Phytochemistry》1973,12(3):637-653
A proportion of the polysaccharides and glycoproteins of apple fruit cell walls can be readily extracted in neutral buffer at or below 20°. Removal of more material was not achieved with a wide range of dissociative aqueous reagents or non-aqueous solvents. Thus traditional degradative extractants were used to obtain soluble components for further characterization. Polysaccharides and glycoproteins were separated and purified by chromatography on DEAE-cellulose columns and by gel filtration. Purified components were hydrolysed and analysed for neutral sugar and uronic acid content and for their amino acid and hydroxyproline content. The possibility of linkages existing in the cell wall between polyuronide and glycoproteins containing hydroxyproline, arabinose and galactose residues is discussed. Because of aggregation between these components, which occurs after extraction, the presence of such linkages in vivo is difficult to establish. Other cell wall glycoproteins containing xylose and glucose residues are thought to have a possible role in stabilizing hemicellulose structure.  相似文献   

18.
Abstract. Diapause adults of Plautia stali Scott maintained at 20°C under short day conditions (LD 12:12 h) were exposed to four temperatures of 5–20°C to examine the effect on diapause development which was assessed in terms of oviposition. Diapause adults kept at 20°C under short day conditions changed their body colour gradually from brown to green and started egg laying after a prolonged preoviposition period. Those transferred to either 10 or 15°C also showed colour change but did not lay eggs. Bugs exposed to 5°C underwent neither body colour change nor oviposition and died more rapidly than those kept at higher temperatures. When 30-day-old diapause adults were chilled at 5, 10 or 15°C for 30 or 60 days and returned to 20°C and long day conditions (LD 16:8 h), the preoviposition period varied primarily depending on the chilling, but not on the temperature. On the other hand, when 60day-old diapause adults chilled for 30 days were observed at 20°C and long day conditions, their preoviposition period tended to be longer as the chilling temperature was lower In this case, a temperature of 10°C appeared to intensify diapause. Therefore, the effect of chilling on diapause development varied depending on the age at which insects were chilled. When chilled bugs were transferred to short day conditions at 20°C, most females failed to lay any eggs and some turned green, then after a while, some green bugs changed to brown again. These results indicate that bugs remained sensitive to short day conditions even after a 60-day chilling at 10 or 15°C.  相似文献   

19.
The effects of cis. trans abscisic acid on response to chilling was investigated in callused Nicotiana tabacum L. pith explants. Explants pretreated with 10-4M ABA underwent approximately 50% less cellular leakage when chilled at 2°C under short-day conditions for 10 d than the comparable non-treated tissue. Growth in terms of fresh and dry weights, although poor in comparison to non-chilled (20°C, long days) treatments, was more than twice that of the non-ABA-treated material. On an absolute dry weight basis proline content increased on chilling from 0.7 to 3.4 mg g-1 in non-ABA-treated explants, but rose to nearly 17 mg g-1 in the tissue treated with ABA. Only in the case of cold-hardened. ABA-treated tissue could some cells survive subzero temperatures and regenerate callus again. It is suggested that at least part of the ameliorating effects of ABA result from an increase in the level of proline.  相似文献   

20.
A reduction in abscisic acid (ABA) content was not a pre-requisite for the breaking of dormancy of vegetative lateral buds of both field-grown trees and shoots of willow (Salix viminalis L.) maintained in controlled conditions. Similar variations in bud ABA levels were observed whether the shoots were stored in a warm (22 ± 1 °C) or cold (6 ± 0.5 °C) environment. Following transfer to a growth room the ABA content of chilled buds declined more rapidly than did that of non-chilled buds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号