首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Extensive studies have now been carried out demonstrating that the systemic administration of the short-acting benzodiazepine, triazolam, can have pronounced effects on both behavioral and endocrine circadian rhythms. For example, three daily injections of triazolam can phase-advance the circadian rhythm of pituitary luteinizing hormone release and locomotor activity by about 2-3 h in female hamsters maintained in constant light. Triazolam has also been found to facilitate the rate of reentrainment of the activity rhythm following an 8-hour advance or delay in the light-dark cycle. Limited studies with other short-acting benzodiazepines indicate that the effects of triazolam on the circadian system of hamsters can be generalized to this class of drugs. Recent studies in humans indicate that treatment with triazolam can alter the time it takes for human endocrine rhythms to become reentrained following an 8-hour delay in the sleep-wake and light-dark cycle. Such findings raise the possibility that short-acting benzodiazepines may prove useful in reducing the symptoms associated with 'jet-lag' and rotating shift-work schedules as well as in the treatment of various physical and mental illnesses that have been associated with a disorder of biological timekeeping.  相似文献   

2.
The circadian rhythm of locomotor activity in hamsters maintained in either constant darkness or constant light can be phase-shifted by a single injection of the short-acting benzodiazepine, triazolam. These results suggest that treatment with triazolam may also alter the entrainment pattern of circadian rhythms in animals that are synchronized to a light-dark (LD) cycle. To test this hypothesis, hamsters maintained on an LD 6:18 light cycle received daily injections of triazolam (or vehicle) for 10-12 days, and any subsequent effects on the phase relationship between the onset of activity and the LD cycle were determined. Daily injections of triazolam (but not vehicle) induced pronounced advances or delays in the phase relationship between the entrained activity rhythm and the LD cycle; the direction of the shift was dependent on the time of the injection. Taken together with data from previous studies, these results suggest that triazolam, and perhaps other short-acting benzodiazepines, can be used to manipulate the mammalian circadian clock under a variety of experimental conditions.  相似文献   

3.
In vivo pharmacological effects of ramelteon (TAK-375), a novel, highly MT1/MT2-selective receptor agonist, were studied in rats to determine ramelteon's ability to reentrain the circadian rhythm after an abrupt phase advance. Experiments were also conducted to assess the potential cognitive side effects of ramelteon and its potential to become a drug of abuse. After an abrupt 8-h phase shift, ramelteon (0.1 and 1 mg/kg, p.o.) and melatonin (10 mg/kg, p.o.) accelerated reentrainment of running wheel activity rhythm to the new lightdark cycle. Ramelteon (3-30 mg/kg, p.o.) and melatonin (10-100 mg/kg, p.o.) did not affect learning or memory in rats tested by the water maze task and the delayed match to position task, although diazepam and triazolam impaired both of the tasks. Neither ramelteon (3-30 mg/kg, p.o.) nor melatonin (10-100 mg/kg, p.o.) demonstrated a rewarding property in the conditioned place-preference test, implying that MT1/MT2 receptor agonists have no abuse potential. In contrast, benzodiazepines and morphine showed rewarding properties in this test. The authors' results suggest that ramelteon may be useful for treatment of circadian rhythm sleep disorders without adverse effects typically associated with benzodiazepine use, such as learning and memory impairment, and drug dependence.  相似文献   

4.
Recent work in our laboratory has shown that sodium pentobarbital injections can induce phase-dependent phase shifts of the circadian rhythm of locomotor activity with the maximum advance at circadian time (CT) 8 and the maximum delay at CT0 in SK/Nga mice but no phase shifts in C57BL/6 mice. In the present study, the possibility that the differences in the effects of pentobarbital on the circadian rhythm may be due to different contributions of the GABA-ergic system to circadian organization in the two strains was tested by comparing the responses of SK mice with those of C57BL mice to muscimol (2 mg/kg), a GABA receptor agonist, and triazolam (25 mg/kg), which is thought to act by potentiating the action of GABA. The hypothesis that pentobarbital-induced phase shifts of SK mice are mediated by the GABA receptor system was also tested by observing whether the phase-shifting effects of pentobarbital were blocked by bicuculline (0.5 mg/kg), a selective antagonist of GABA, injected 3 min prior to pentobarbital (30 mg/kg). The results indicated that muscimol induced phase advances at CT8 and phase delays at CT0, and triazolam induced phase advances at CT8 in SK mice. No phase shifts were induced by any treatment in C57BL mice. These results suggest that the role of GABA-ergic systems in circadian organization may be different in SK and C57BL mice. In addition, bicuculline could block the phase-shifting effects of pentobarbital in SK mice, suggesting that the GABA receptor system may mediate phase-shifting effects of pentobarbital in SK mice.  相似文献   

5.
Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.  相似文献   

6.
《Chronobiology international》2013,30(8):1125-1134
Exercise can induce circadian phase shifts depending on the duration, intensity and frequency. These modifications are of special meaning in athletes during training and competition. Melatonin, which is produced by the pineal gland in a circadian manner, behaves as an endogenous rhythms synchronizer, and it is used as a supplement to promote resynchronization of altered circadian rhythms. In this study, we tested the effect of melatonin administration on the circadian system in athletes. Two groups of athletes were treated with 100?mg?day?1 of melatonin or placebo 30?min before bed for four weeks. Daily rhythm of salivary melatonin was measured before and after melatonin administration. Moreover, circadian variables, including wrist temperature (WT), motor activity and body position rhythmicity, were recorded during seven days before and seven days after melatonin or placebo treatment with the aid of specific sensors placed in the wrist and arm of each athlete. Before treatment, the athletes showed a phase-shift delay of the melatonin circadian rhythm, with an acrophase at 05:00?h. Exercise induced a phase advance of the melatonin rhythm, restoring its acrophase accordingly to the chronotype of the athletes. Melatonin, but not placebo treatment, changed daily waveforms of WT, activity and position. These changes included a one-hour phase advance in the WT rhythm before bedtime, with a longer nocturnal steady state and a smaller reduction when arising at morning than the placebo group. Melatonin, but not placebo, also reduced the nocturnal activity and the activity and position during lunch/nap time. Together, these data reflect the beneficial effect of melatonin to modulate the circadian components of the sleep–wake cycle, improving sleep efficiency.  相似文献   

7.
Summary The rhythm in melatonin production in the rat is driven by a circadian rhythm in the pineal N-acetyltransferase (NAT) activity. Rats adapted to an artificial lighting regime of 12 h of light and 12 h of darkness per day were exposed to an 8-h advance of the light-dark regime accomplished by the shortening of one dark period; the effect of melatonin, triazolam and fluoxetine, together with 5-hydroxytryptophan, on the reentrainment of the NAT rhythm was studied.In control rats, the NAT rhythm was abolished during the first 3 cycles following the advance shift. It reappeared during the 4th cycle; however, the phase relationship between the evening rise in activity and the morning decline was still compressed.Melatonin accelerated the NAT rhythm reentrainment. In rats treated chronically with melatonin at the new dark onset, the rhythm had already reappeared during the 3rd cycle, in the middle of the advanced night, and during the 4th cycle, the phase relationship between the evening onset and the morning decline of the NAT activity was the same as before the advance shift. In rats treated chronically with melatonin at the old dark onset or in those treated with melatonin 8 h, 5 h and 2 h after the new dark onset during the 1st, 2nd and 3rd cycle, respectively, following the advance shift, the NAT rhythm reappeared during the 3rd cycle as well but in the last third of the advanced night only.Neither triazolam nor fluoxetine together with 5-hydroxytryptophan administered around the new dark onset facilitated NAT rhythm reentrainment after the 8-h advance of the light-dark cycle.Abbreviations NAT N-acetyltransferase - LD cycle light-dark cycle - CT circadian time - LD xy light dark cycle comprising x h of light and y h of darkness  相似文献   

8.
Partial sleep deprivation is increasingly common in modern society. This study examined for the first time if partial sleep deprivation alters circadian phase shifts to bright light in humans. Thirteen young healthy subjects participated in a repeated-measures counterbalanced design with 2 conditions. Each condition had baseline sleep, a dim-light circadian phase assessment, a 3-day phase-advancing protocol with morning bright light, then another phase assessment. In one condition (no sleep deprivation), subjects had an 8-h sleep opportunity per night during the advancing protocol. In the other condition (partial sleep deprivation), subjects were kept awake for 4 h in near darkness (<0.25 lux), immediately followed by a 4-h sleep opportunity per night during the advancing protocol. The morning bright light stimulus was four 30-min pulses of bright light (~5000 lux), separated by 30-min intervals of room light. The light always began at the same circadian phase, 8 h after the baseline dim-light melatonin onset (DLMO). The average phase advance without sleep deprivation was 1.8 ± 0.6 (SD) h, which reduced to 1.4 ± 0.6 h with partial sleep deprivation (p < 0.05). Ten of the 13 subjects showed reductions in phase advances with partial sleep deprivation, ranging from 0.2 to 1.2 h. These results indicate that short-term partial sleep deprivation can moderately reduce circadian phase shifts to bright light in humans. This may have significant implications for the sleep-deprived general population and for the bright light treatment of circadian rhythm sleep disorders such as delayed sleep phase disorder.  相似文献   

9.
Summary The suprachiasmatic nucleus (SCN) of the hypothalamus contains a neural oscillatory system which regulates many circadian rhythms in mammals. Immunohistochemical evidence indicates that a relatively high density of GABAergic neurons exist in the suprachiasmatic region. Since intraperitoneal injections of the benzodiazepine, triazolam, have been shown to induce phase shifts in the free-running circadian rhythm of locomotor activity in the golden hamster, the extent to which microinjections of muscimol, a specific agonist for gamma-aminobutyric acid (GABA), may cause phase-shifts in hamster activity rhythms was investigated. Stereotaxically implanted guide cannulae aimed at the region of the SCN were used to deliver repeated microinjections in individual animals. A phase-response curve (PRC) generated from microinjections of muscimol revealed that the magnitude and direction of permanent phase-shifts in the activity rhythm were associated with the time of administration. The PRC generated for muscimol was characterized by maximal phase-advances induced 6 h before activity onset and by maximal phase-delays which occurred 6 h after activity onset. The PRC for muscimol had a shape similar to a PRC previously generated for the short-acting benzodiazepine, triazolam. Single microinjections of different doses of muscimol given 6 h before activity onset induced phase-advances in a dose-dependent fashion. Histological analysis revealed that phase shifts induced by the administration of muscimol were associated with the proximity of the injection site to the SCN area. These data indicate that a GABAergic system may exist within the suprachiasmatic region as part of a central biological clock responsible for the regulation of the circadian rhythm of locomotor activity in the golden hamster.Abbreviations CT circadian time - GABA gamma-aminobutyric acid - OC optic chiasm - PRC phase-response curve - SEM standard error of mean - SCN suprachiasmatic nuclei - T track - IIIV third ventricle  相似文献   

10.
Biological circadian clocks oscillate with an approximately 24-hour period, are ubiquitous, and presumably confer a selective advantage by anticipating the transitions between day and night. The circadian rhythms of sleep, melatonin secretion and body core temperature are thought to be generated by the suprachiasmatic nucleus of the hypothalamus, the anatomic locus of the mammalian circadian clock. Autosomal semi-dominant mutations in rodents with fast or slow biological clocks (that is, short or long endogenous period lengths; tau) are associated with phase-advanced or delayed sleep-wake rhythms, respectively. These models predict the existence of familial human circadian rhythm variants but none of the human circadian rhythm disorders are known to have a familial tendency. Although a slight 'morning lark' tendency is common, individuals with a large and disabling sleep phase-advance are rare. This disorder, advanced sleep-phase syndrome, is characterized by very early sleep onset and offset; only two cases are reported in young adults. Here we describe three kindreds with a profound phase advance of the sleep-wake, melatonin and temperature rhythms associated with a very short tau. The trait segregates as an autosomal dominant with high penetrance. These kindreds represent a well-characterized familial circadian rhythm variant in humans and provide a unique opportunity for genetic analysis of human circadian physiology.  相似文献   

11.
Melatonin in circadian sleep disorders in the blind   总被引:2,自引:0,他引:2  
Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin.  相似文献   

12.
Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18-23 yrs) were recruited in Murcia, Spain (latitude 38°01'N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption.  相似文献   

13.

This study evaluated the effectiveness of a head-mounted portable light device, Re-Timer, for phase advancing the circadian rhythm of healthy sleepers in the home environment. The Re-Timer was designed to address the limitations of traditional bright light boxes, making it more practical and efficient for administering light therapy. Eighteen healthy participants underwent a crossover design treatment protocol, consisting of seven consecutive mornings of using Re-Timer compared with the same procedure but not using Re-Timer. Circadian phase was measured using salivary dim light melatonin onset (DLMO) and subjective sleepiness was also assessed for other phase-change effects. After using the Re-Timer for seven mornings, a significant phase advance in DLMO of 41 min compared to a 10-min delay in the no-light control condition was observed. However, subjective sleepiness did not differ significantly between the two conditions. A few minor and transient side effects were experienced by participants, but no treatment was required. The Re-Timer is an effective and safe device for advancing the circadian rhythm of healthy sleepers at home. Future research on its clinical utility could make Re-Timer a practical and affordable way to self-administer bright light therapy for sleep disorders.

  相似文献   

14.
The circadian pacemaker and sleep homeostasis play pivotal roles in vigilance state control. It has been hypothesized that age-related changes in the human circadian pacemaker, as well as sleep homeostatic mechanisms, contribute to the hallmarks of age-related changes in sleep, that is, earlier wake time and reduced sleep consolidation. Assessments of circadian parameters in healthy young (~20–30 years old) and older people (~65–75 years old)—in the absence of the confounding effects of sleep, changes in posture, and light exposure—have demonstrated that an earlier wake time in older people is accompanied by about a 1h advance of the rhythms of core body temperature and melatonin. In addition, older people wake up at an earlier circadian phase of the body temperature and plasma melatonin rhythm. The amplitude of the endogenous circadian component of the core body temperature rhythm assessed during constant routine and forced desynchrony protocols is reduced by 20–30% in older people. Recent assessments of the intrinsic period of the human circadian pacemaker in the absence of the confounding effects of light revealed no age-related reduction of this parameter in both sighted and blind individuals. Wake maintenance and sleep initiation are not markedly affected by age except that sleep latencies are longer in older people when sleep initiation is attempted in the early morning. In contrast, major age-related reductions in the consolidation and duration of sleep occur at all circadian phases. Sleep of older people is particularly disrupted when scheduled on the rising limb of the temperature rhythm, indicating that the sleep of older people is more susceptible to arousal signals genernpated by the circadian pacemaker. Sleep-homeostatic mechanisms, as assayed by the sleep-deprivation–induced increase of EEG slow-wave activity (SWA), are operative in older people, although during both baseline sleep and recovery sleep SWA in older people remains at lower levels. The internal circadian phase advance of awakening, as well as the age-related reduction in sleep consolidation, appears related to an age-related reduction in the promotion of sleep by the circadian pacemaker during the biological night in combination with a reduced homeostatic pressure for sleep. Early morning light exposure associated with this advance of awakening in older people could reinforce the advanced circadian phase. Quantification of the interaction between sleep homeostasis and circadian rhythmicity contributes to understanding age-related changes in sleep timing and quality. (Chronobiology International, 17(3), 285–311, 2000)  相似文献   

15.
The circadian pacemaker and sleep homeostasis play pivotal roles in vigilance state control. It has been hypothesized that age-related changes in the human circadian pacemaker, as well as sleep homeostatic mechanisms, contribute to the hallmarks of age-related changes in sleep, that is, earlier wake time and reduced sleep consolidation. Assessments of circadian parameters in healthy young (∼20-30 years old) and older people (∼65-75 years old)—in the absence of the confounding effects of sleep, changes in posture, and light exposure—have demonstrated that an earlier wake time in older people is accompanied by about a 1h advance of the rhythms of core body temperature and melatonin. In addition, older people wake up at an earlier circadian phase of the body temperature and plasma melatonin rhythm. The amplitude of the endogenous circadian component of the core body temperature rhythm assessed during constant routine and forced desynchrony protocols is reduced by 20-30% in older people. Recent assessments of the intrinsic period of the human circadian pacemaker in the absence of the confounding effects of light revealed no age-related reduction of this parameter in both sighted and blind individuals. Wake maintenance and sleep initiation are not markedly affected by age except that sleep latencies are longer in older people when sleep initiation is attempted in the early morning. In contrast, major age-related reductions in the consolidation and duration of sleep occur at all circadian phases. Sleep of older people is particularly disrupted when scheduled on the rising limb of the temperature rhythm, indicating that the sleep of older people is more susceptible to arousal signals genernpated by the circadian pacemaker. Sleep-homeostatic mechanisms, as assayed by the sleep-deprivation-induced increase of EEG slow-wave activity (SWA), are operative in older people, although during both baseline sleep and recovery sleep SWA in older people remains at lower levels. The internal circadian phase advance of awakening, as well as the age-related reduction in sleep consolidation, appears related to an age-related reduction in the promotion of sleep by the circadian pacemaker during the biological night in combination with a reduced homeostatic pressure for sleep. Early morning light exposure associated with this advance of awakening in older people could reinforce the advanced circadian phase. Quantification of the interaction between sleep homeostasis and circadian rhythmicity contributes to understanding age-related changes in sleep timing and quality. (Chronobiology International, 17(3), 285-311, 2000)  相似文献   

16.
Patients with liver cirrhosis show disturbances in sleep and in its circadian rhythms which are an early sign of minimal hepatic encephalopathy (MHE). The mechanisms of these disturbances are poorly understood. Rats with porta-caval shunt (PCS), a model of MHE, show sleep disturbances reproducing those of cirrhotic patients. The aims of this work were to characterize the alterations in circadian rhythms in PCS rats and analyze the underlying mechanisms. To reach these aims, we analyzed in control and PCS rats: (a) daily rhythms of spontaneous and rewarding activity and of temperature, (b) timing of the onset of activity following turning-off the light, (c) synchronization to light after a phase advance and (d) the molecular mechanisms contributing to these alterations in circadian rhythms. PCS rats show altered circadian rhythms of spontaneous and rewarding activities (wheel running). PCS rats show more rest bouts during the active phase, more errors in the onset of motor activity and need less time to re-synchronize after a phase advance than control rats. Circadian rhythm of body temperature is also slightly altered in PCS rats. The internal period length (tau) of circadian rhythm of motor activity is longer in PCS rats. We analyzed some mechanisms by which hypothalamus modulate circadian rhythms. PCS rats show increased content of cGMP in hypothalamus while the activity of cGMP-dependent protein kinase was reduced by 41% compared to control rats. Altered cGMP-PKG pathway in hypothalamus would contribute to altered circadian rhythms and synchronization to light.  相似文献   

17.
Based on genetic and biochemical advances on the molecular mechanism of circadian rhythms, a computational model for the mammalian circadian clock is used to examine the dynamical bases of circadian-clock-related physiological disorders in humans. Entrainment by the light-dark cycle with a phase advance or a phase delay is associated with the Familial advanced sleep phase syndrome (FASPS) or the Delayed sleep phase syndrome (DSPS), respectively. Lack of entrainment corresponding to the occurrence of quasiperiodic oscillations with or without phase jump can be associated with the non-24 h sleep-wake syndrome. In the close vicinity of the entrainment domain, the model uncovers the possibility of infradian oscillations of very long period. Perturbation in the form of chronic jet lag, as used in mice, prevents entrainment of the circadian clock and results in chaotic or quasiperiodic oscillations. It is important to clarify the conditions for entrainment and for its failure because dysfunctions of the circadian clock may lead to physiological disorders, which pertain not only to the sleep-wake cycle but also to mood and cancer.  相似文献   

18.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

19.
Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive prior to awakening (changes in sleep efficiency across circadian phase or across the tertiaries), or by the proportion of the varied sleep stages prior to awakenings. This robust endogenous circadian rhythm in sleep inertia may have important implications for people who need to be alert soon after awakening.  相似文献   

20.
Aging alters many aspects of circadian rhythmicity, including responsivity to phase-shifting stimuli and the amplitude of the rhythm of melatonin secretion. As melatonin is both an output from and an input to the circadian clock, we hypothesized that the decreased melatonin levels exhibited by old hamsters may adversely impact the circadian system as a whole. We enhanced the diurnal rhythm of melatonin by feeding melatonin to young and old hamsters. Animals of both age groups on the melatonin diet showed larger phase shifts than control-fed animals in response to an injection with the benzodiazepine triazolam at a circadian time known to induce phase advances in the activity rhythm of young animals. Thus melatonin treatment can increase the sensitivity of the circadian timing system of young animals to a nonphotic stimulus, and the ability to increase this sensitivity persists into old age, indicating exogenous melatonin might be useful in reversing at least some age-related changes in circadian clock function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号