首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and simple method for the analysis of free and conjugated catecholamines in body tissues and fluids is described. The free catecholamines were isolated by standard alumina procedures before and after hydrolysis of the conjugated compounds to free compounds by heating the samples in perchloric acid. Free catecholamines were then separated by high-performance liquid chromatography and detected by electrochemical detection. Conjugated compound was the difference between the total and free amount in each sample. This method was utilized to measure free and conjugated norepinephrine, epinephrine, and dopamine in human urine and rat adrenal gland, and to measure free and conjugated dopamine in rat whole brain and kidney.  相似文献   

2.
Chlordiazepoxide and its 4 major metabolites were assayed after separation by thin-layer chromatography following extraction from biological fluids. The compounds become intensely fluorescent in the presence of red, fuming nitric acid. The resulting compounds are quantitated with a spectrodensitometer with a fluorescent attachment. The sensitivity varies between 0.05 and 0.1 μg. The coefficient of variation is 1.4% for assays in urine and 6.4% in serum.  相似文献   

3.
Six arsenic compounds including arsenocholine, arsenobetaine, dimethylarsinic acid, methylarsonic acid, arsenous acid and arsenic acid were separated by high-performance liquid chromatography (HPLC) on a Hamilton PRP-X100 anion-exchange column using isocratic elution and detected by inductively coupled plasma mass spectrometry (ICP-MS). This analytical procedure was applied to the speciation of arsenic compounds in human urine. The influence of urine matrix on the separation of arsenic compounds was evaluated and the determination of arsenic compounds was not hampered by the ArCl interference which has often been encountered in ICP-MS. Three human urine reference materials, SRM 2670 normal level, SRM 2670 elevated level and Lyphocheck urine metal control 1, were analyzed with respect to arsenic compounds by HPLC-ICP-MS. The results were found to be in good agreement with the certified total arsenic concentration in the reference materials. Six arsenic compounds were detected. Arsenobetaine was found to be present in all of the investigated human urine reference materials.  相似文献   

4.
Biliary and urinary bile alcohol and bile acid composition has been determined by high performance liquid chromatography in patients with cerebrotendinous xanthomatosis before and after treatment with chenodeoxycholic acid. Most of the bile acids and bile alcohols in the bile and urine were separated in less than 30 min using a radial pack C18 muBondapak 5 micron particle size column with a mobile phase of acetonitrile-water-methanol-acetic acid 70:70:20:1 (v/v/v/v) at a flow rate of 2 ml/min, and a refractive index detector. Before treatment, cholic acid (49%) and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol (27%) were the major biliary bile acid and bile alcohol, respectively, but were not detected in the urine of five patients. 5 beta-Cholestane-pentols were, instead, the major urinary bile alcohols with 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 23 xi, 25-pentol (56%) predominating. Whereas 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24S,25-pentol was not detected in the bile, it was isolated in the urine of all patients (27%). The only urinary bile acid isolated by high performance liquid chromatography was nor-cholic acid. After 1 month of treatment with chenodeoxycholic acid, 0.75 g/day, chenodeoxycholic acid became the major bile acid in the bile of all patients (71%) along with its metabolite, ursodeoxycholic acid (21%). Cholic acid and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol were drastically reduced and were only 3% each. The excretion of 5 beta-cholestane-pentols in the urine was also drastically reduced from 130 mg/day to 15 mg/day.  相似文献   

5.
A sensitive and specific method was developed for measuring medium-chain dicarboxylic acids (adipic and suberic acid) in urine. These acids were extracted from urine with diethyl ether and converted into fluorescent derivatives with 9-anthryldiazomethane, which can be separated by high-performance liquid chromatography. The reproducibility was high and the recovery from urine was above 90%. Urinary concentrations of adipic acid in streptozotocin-induced diabetic rats were significantly higher than those in control rats. In diabetic patients, both adipic acid and suberic acid tended to be high, but not significantly. This method should be useful for measuring dicarboxylic acids in urine  相似文献   

6.
beta-Aspartyl-methionine, -aspartic acid and -glutamic acid and gamma-glutamyl-threonine and -glycine were isolated and identified in human urine by ion-exchange chromatography, high-voltage paper electrophoresis, acid hydrolysis and determination of N-terminal amino acids of the isolated compounds, and comparison of their behaviors in paper electrophoresis and chromatography with those of the authentic compounds. The concentrations of acidic beta-aspartyl dipeptides in human urine were determined using an amino acid analyzer. Their concentrations were as follows: beta-aspartyl-glycine, male, 44.4 +/- 8.5, female, 61.4 +/- 18.9, child, 83.7 +/- 27.1; -alanine, male, 11.0 +/- 4.9, female, 20.7 +/- 12.0, child, 25.3 +/- 9.1; -glutamic acid, male, 10.0 +/- 3.7, female, 23.0 +/- 8.5, child, 20.4 +/- 7.5; -serine, male, 9.9 +/- 2.8, female, 13.6 +/- 3.8, child, 14.9 +/- 4.7; -aspartic acid, male, 4.3 +/- 1.0, female, 9.1 +/- 2.2, child, 18.4 +/- 6.5; -threonine, male 3.9 +/- 0.9, female, 5.8 +/- 1.1, child, 13.2 +/- 4.9 mumol/g creatinine (mean +/- S.D.). The order of the sum of their concentrations tended to be child greater than female greater than male. Patients receiving intravenous hyperalimentation also excreted acidic beta-aspartyl dipeptides into urine in amounts similar to those in females and in a pattern similar to that observed in healthy persons. This finding indicates that urinary beta-aspartyl dipeptides were probably of endogenous origin because oral nutrition was stringently excluded in these patients.  相似文献   

7.
Methanol and its metabolite formic acid have been found extractable from human whole blood and urine by headspace solid-phase microextraction (SPME) with a Carboxen/polydimethylsiloxane fiber. The headspace SPME for formic acid was carried out after derivatization to methyl formate under acidic conditions. The determinations of both compounds were made by using acetonitrile as internal standard (IS) and capillary gas chromatography (GC) with flame ionization detection. The headspace SPME–GC gave sharp peaks for methanol, methyl formate and I.S.; and low background noises for whole blood and urine samples. Extraction efficiencies were 0.25–1.05% of methanol and 0.38–0.84% formic acid for whole blood and urine. The calibration curves for methanol and formic acid showed excellent linearity in the range of 1.56 to 800 and 1.56 to 500 μg/0.5 ml of whole blood or urine, respectively. The detection limits were 0.1–0.5 μg/0.5 ml for methanol and 0.6 μg/0.5 ml for formic acid for both body fluids. The within-day relative standard deviations in terms of extraction efficiency for both compounds in whole blood and urine samples were not greater than 9.8%. By using the established SPME method, methanol and formic acid were successfully separated and determined in rat blood after oral administration of methanol.  相似文献   

8.
The catecholic amino acids, dopa, 2-S- and 5-S-cysteinyldopa, and 2,5-S,S-dicysteinyldopa were determined qualitatively in serum from patients with malignant melanoma by reversed-phase high-performance liquid chromatography, using electrochemical detection. In urine the catecholamines dopamine, noradrenaline and adrenaline were also determined qualitatively, as well as the above-mentioned compounds, in a single chromatographic run. The conditions were optimized by changing the pH of the mobile phase and by the addition of methanesulphonic acid. A comparison was made between the performance of four commercial reversed-phase packing materials containing chemically bonded octadecyl groups, using a standard mixture of catecholic amino acids. The influence of ionic strength, pH and amount of methanesulphonic acid on retention was investigated.  相似文献   

9.
Procedures are presented for the simultaneous analysis of hypoxanthine, xanthine, allopurinol, oxipurinol, and uric acid in standard mixtures and physiological fluids using gas chromatography (gc) or high-pressure liquid chromatography (hplc). Excellent correlation was obtained between the two methods for hypoxanthine, xanthine, oxipurinol, and uric acid. There are advantages and disadvantages to both methods. hplc requires no prior derivatization, uses isocratic elution with a buffer containing no organic solvent, and has 50- to 100-fold greater sensitivity than gc. Simpler methods of prepurification, readily adapted to clinical laboratories, can be used for hplc analysis. Although substances that are found in some urine samples from cancer patients interfere with hplc, separations by gc are not affected by these substances.  相似文献   

10.
Quercetrin, quercetin and chlorogenic acid were measured in urine or in drugs by combination of boronic acid affinity chromatography and HPLC. Simple reversed-phase HPLC with UV detection was used to determine quercetrin in five different Solidago virgaurea drugs. For determination of quercetrin in human urine immobilized boronic acid was applied for sample pretreatment. This procedure leads to a determination limit of 0.01 μg/ml with a recovery rate of 95.3%. The first results using this method for quercetrin pharmacokinetics are presented.  相似文献   

11.
An automated liquid chromatographic method for assaying vanilmandelic acid in urine is described. Vanilmandelic acid and potential interfering substances, such as catechol compounds and their metabolites, have been tested for affinity to boronic acid-substituted silica at various pH values. Vanilmandelic acid and the internal standard, isovanilmandelic acid, were bound to the boronate matrix at an acidic pH, whereas for instance catecholamines were unretained and passed through the column. The α-hydroxycarboxylic acids were then desorbed by another mobile phase (pH 6.0) and transferred to an anion exchanger for chromatography and electrochemical detection. A relative standard deviation of 2.8% was obtained for the analysis of human urine samples containing 6.6 μM vanilmandelic acid.  相似文献   

12.
A novel screening procedure for the sulfate and glucuronide conjugates of testosterone (T) and epitestosterone (E) in human urine was developed based on liquid-solid extraction and microbore high-performance liquid chromatography combined on-line with ion-spray tandem mass spectrometry. Confirmation of the sulfate and glucuronide conjugates of testosterone and epitestosterone isolated frrm normal human urine was acheived by selected reaction monitoring of characteristic product ions of the parent compounds. Endogenous levels of the steroid conjugates are detected in normal male urine and an increase is observed when the sample is fortified with authentic analytical standards of the conjugates. Calibration curves of all steroid conjugates in urine are linear over a range of twenty. Deuterated internal standards of testosterone glucuronide and epitestosterone sulfate were used for quantitation of the endogenous conjugates. T/E ratios were determined based on the glucuronide fractions of six replicates from a normal male and were shown to be statistically reproducible and below the accepted T/E threshold of 6:1. Sulfate conjugates were shown to be present at significantly lower levels in the urine. The method has potential as an alternative for monitoring anabolic steroid conjugates in human urin.  相似文献   

13.
This paper describes the development of a high-performance liquid chromatographic method for the quantitation of free carnitine, total carnitine, acetylcarnitine, propionylcarnitine, isovalerylcarnitine, hexanoylcarnitine and octanoylcarnitine in human urine. Carnitine and acylcarnitines were isolated from 10 or 25 μl of urine using 0.5-ml columns of silica gel, derivatized with 4'-bromophenacyl trifluoromethanesulfonate and separated by high-performance liquid chromatography. Using 4-(N,N-dimethyl-N-ethylammonio)-3-hydroxybutanoate (“e-carnitine”) as the internal standard, standard curves (10–300 nmol/ml) were generated. Carnitine and acylcarnitines were quantified (when they were present) in normal human urine and the urine of patients diagnosed with one of three different disorders of organic acid metabolism: methylmalonic aciduria, isovaleric acidemia, and medium-chain acyl-CoA dehydrogenase deficiency.  相似文献   

14.
Arylsulfatase A (aryl-sulfate sulfohydrolase, EC 3.1.6.1) was isolated from an ammonium sulfate precipitate of urinary proteins using two different affinity chromatography methods. One method involved the use of concanavalin A-Sepharose affinity chromatography at an early stage of purification, followed by preparative polyacrylamide gel electrophoresis. The other procedure employed arylsulfatase subunit affinity chromatography as the main step and resulted in a remarkably efficient purification. The enzyme had a specific activity of 63 U/mg. The final preparation of arylsulfatase A was homogeneous on the basis of polyacrylamide gel electrophoresis at pH 7.5, and by immunochemical analysis. However, when an enzyme sample obtained by either method of purification was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing or non-reducing conditions, peptide subunits, of 63.5 and 54.5 kDa, were observed. Immunological tests with 125I-labeled enzyme established the presence of a common protein component in both of the electrophoretically separable peptide subunits of human urine arylsulfatase. The amino acid analysis of homogeneous human urine arylsulfatase A showed only a few differences between it and the human liver enzyme. However, immunological cross-reactivity studies using rabbit anti-human urine arylsulfatase revealed immunological difference between the human urine and liver arylsulfatase A enzymes.  相似文献   

15.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

16.
1. The metabolism of cis- and trans-acenaphthene-1,2-diol has been studied after the administration of these compounds to rats by subcutaneous injection and by stomach tube. 2. 1,8-Naphthalic acid has been isolated as its anhydride from the urine of the dosed animals. 3. A spectrophotometric method for the determination of free and conjugated 1,8-naphthalic acid in urine has been developed and has been used in the study of the metabolism of the acenaphthene-1,2-diols. 4. The urine of rats dosed with cis-acenaphthene-1,2-diol by subcutaneous injection was shown by paper chromatography to contain both cis- and trans-acenaphthene-1,2-diol. Similar findings were obtained after the subcutaneous injection of trans-acenaphthene-1,2-diol.  相似文献   

17.
Automated procedures for the determination of CGP 33 101 in plasma and the simultaneous determination of CGP 33 101 and its carboxylic acid metabolite, CGP 47 292, in urine are described. Plasma was diluted with water and urine with a pH 2 buffer prior to extraction. The compounds were automatically extracted on reversed-phase extraction columns and injected onto an HPLC system by the automatic sample preparation with extraction columns (ASPEC) automate. A Supelcosil LC-18 (5 μm) column was used for chromatography. The mobile phase was a mixture of an aqueous solution of potassium dihydrogen phosphate, acetonitrile and methanol for the assay in plasma, and of an aqueous solution of tetrabutylammonium hydrogen sulfate, tripotassium phosphate and phosphoric acid and of acetonitrile for the assay in urine. The compounds were detected at 230 nm. The limit of quantitation was 0.11 μml/l (25 ng/mol) for the assay of CGP 33 101 in plasma, 11 μmol/l (2.5 μg/ml) for its assay in urine and 21 μmol/l (5 μg/ml) for the assay of CGP 47 292 in urine.  相似文献   

18.
A quantitative liquid chromatography mass spectrometry (LC-MS) methodology with online sample clean up by column switching is described for the simultaneous determination of the hydroxycinnamates, caffeic acid and chlorogenic acid, and of the catechins, epicatechin and catechin in human urine samples. Enzymatically treated urine samples were directly injected onto the LC-MS system, where sample clean up was performed by a reversed-phase Zorbax 300SB C(3) column and selective elution of the target compounds onto a Zorbax SB C(18) column resulted in final separation prior to detection by atmospheric pressure chemical ionization (APCI) MS using single ion monitoring (SIM) in negative mode. Linear calibration graphs were achieved in the dynamic range of 10-1000 ng/ml urine. The inter- and intraassay coefficients of variation (C.V.%) for the analysis of the four compounds in quality control urine samples were between 7.8 and 10.9, n=17 (reproducibility), and the repeatability of the assay was between 2.5 and 5.0% (n=12). Analyses of urine samples from a human dietary intervention study with intake of 600 g of fruits and vegetables were demonstrated. To our knowledge, this is the first method described that allows simultaneous determination of both hydroxycinnamates and catechins in biological samples.  相似文献   

19.
Three phosphate-containing sialyloligosaccharides were isolated from normal human urine using charcoal adsorption, gel-filtration chromatography, ion-exchange chromatography and paper chromatography. Studies including gas-liquid chromatography of monosaccharide and disaccharide derivatives, methylation analysis, phosphate determination, ion-exchange chromatography and glycosidase and phosphatase treatments indicated the following three structures for the compounds isolated: NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(alpha)-P; NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc(alpha)-P; NeuAc(alpha 2-3)Gal(beta 1-3)GalNAc(alpha)-P. These sialyloligosaccharide 1-phosphates represent a novel class of oligosaccharides. Their oligosaccharide chains are identical with the common sialyloligosaccharide end groups of glycoproteins and glycolipids. The excretion of these compounds in normal human urine may indicate the existence of a novel, as yet unrevealed pathway in the metabolism of complex carbohydrates.  相似文献   

20.
The determination of metabolites of benzene, toluene, ethylbenzene, and xylenes in urine has been used to assess human exposure to these compounds. The analyses of urine samples for these metabolites are tedious and time consuming. The determination of unmetabolized individual compounds in urine has been studied previously with some success. A simultaneous determination of several unmetabolized VOC compounds in urine by thermal desorption–gas chromatography was conducted to assess the exposure of smokers and nonsmokers to these compounds. The method of thermal desorption–GC was sensitive enough to detect a significant difference in exposure levels due to the contribution of light smoking in the environmentally-exposed group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号