首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Ellipsometry and mechanically assisted sodium dodecyl sulphate elution was utilized to study the adsorption of human serum albumin (HSA), human immunoglobulin G (IgG), and laminin-1, as well as competitive adsorption from a mixture of these proteins on spin-coated and sintered hydroxyapatite (HA) surfaces, respectively. The HA surfaces were characterized with respect to wettability and roughness by means of water contact angles and atomic force microscopy, respectively. Both surface types were hydrophilic, and the average roughness (Sa) and surface enlargement (Sdr) were lower for the sintered compared to the spin-coated HA surfaces. The adsorbed amounts on the sintered HA increased as follows: HSA < laminin-1 < IgG < the protein mixture. For the competitive adsorption experiments, the adsorbed fractions increased accordingly: HSA < laminin-1 < IgG on both types of HA substratum. However, a higher relative amount of HSA and laminin-1 and a lower relative amount of IgG was found on the spin-coated surfaces compared to the sintered surfaces. The effects observed could be ascribed to differences in surface roughness and chemical composition between the two types of HA substratum, and could have an influence on selection of future implant surface coatings.  相似文献   

2.
Chen A  Kozak D  Battersby BJ  Trau M 《Biofouling》2008,24(4):267-273
The use and advantage of flow cytometry as a particle-by-particle, low sampling volume, high-throughput screening technique for quantitatively examining the non-specific adsorption of proteins onto surfaces is presented. The adsorption of three proteins: bovine serum albumin (BSA), immunoglobulin gamma (IgG) and protein G, incubated at room temperature for 2 h onto organosilica particles modified with poly(ethylene glycol) (PEG) of increasing MW (2000, 3400, 6000, 10,000 and 20,000 g mol(-1)) and grafted amounts (0.14-1.4 mg m(-2)) was investigated as a model system. Each protein exhibited Langmuir-like, high affinity monolayer limited adsorption on unmodified particles with the proteins reaching surface saturation at 1.8, 4.0 and 2.5 mg m(-2) for BSA, IgG and protein G, respectively. Protein adsorption on PEG-modified surfaces was found to decrease with increasing amounts of grafted polymer. PEG grafting amounts >0.6 mg m(-2) effectively prevented the adsorption of the larger two proteins (BSA and IgG) while a PEG grafting amount >1.3 mg m(-2) was required to prevent the adsorption of the smaller protein G.  相似文献   

3.
Grafting of poly(ethylene glycol) (PEG) is a common strategy for reducing nonspecific interactions of surfaces with proteins. We have used grafting at "cloud point" solution conditions that ensures maximum grafting density of linear methoxy terminated PEG-aldehyde (mPEG-ald, M(w) = 5000 and 30000). In an alternative approach, surfaces were modified with layers prepared from isocyanate terminated, star shaped poly(ethylene glycol-stat-propylene glycol) prepolymers (80% ethylene glycol, six arms, M(w) = 3000, 12,000, and 18,000; this compound will be referred to as "Star PEG" in the text). Due to the highly reactive endgroups, these molecules form a dense network on the substrate with a high polymer surface coverage. The two systems were compared regarding their ability to prevent unspecific adsorption of insulin and lysozyme. The layers were analyzed by ellipsometry, contact angle measurements, and XPS. Protein adsorption was monitored by surface MALDI-TOF MS and fluorescence microscopy. No protein adsorption could be detected on Star PEG coatings and on mPEG-ald 5000, whereas mPEG-ald 30,000 could only prevent adsorption of lysozyme but not of the smaller insulin.  相似文献   

4.
In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing S-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior.  相似文献   

5.
Cell transfer printing from patterned poly(ethylene glycol)-oleyl surfaces onto biological hydrogel sheets is investigated herein, as a new cell stamping method for both cell microarray and tissue engineering. By overlaying a hydrogel sheet on the cells immobilized on the poly(ethylene glycol)-oleyl surface and successively peeling it off, the immobilized cells were transferred onto a hydrogel sheet because the adhesive interaction between the cells and the hydrogel was stronger than that between the cells and the poly(ethylene glycol)-oleyl surface. Four types of human cell could be efficiently transferred onto a rigid collagen sheet. The transfer printing ratios, for all cells, were above 80% and achieved within 90 min. A cell microarray was successfully prepared on a collagen gel sheet using the present stamping method. We have also demonstrated that the transferred pattern of endothelial cells is transformed to the patterned tube-like structure on the reconstituted basement membrane matrix. Finally, the patterns of two types of endothelial cell are shown to be easily prepared on the matrix, and the desired tube-like structures, including the orderly pattern of the two different cells, were formed spontaneously. Thus, the present poly(ethylene glycol)-oleyl coated substrates are useful for rapid and efficient cell stamping, in the preparation of multi-cellular pattern on extracellular matrices.  相似文献   

6.
Electrospun fibers that are protein resistant and functionalized with bioactive signals were produced by solution electrospinning amphiphilic block copolymers. Poly (ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PDLLA) was synthesized in two steps, with a PEG segment of 10 kDa, while the PDLLA block ranged from 20 to 60 kDa. Depending on the PEG and PDLLA segment ratio, as well as solvent selection, the hydrophilicity and protein adsorption could be altered on the electrospun mesh. Furthermore, an alpha-acetal PEG-b-PDLLA was synthesized that allowed the conjugation of active molecules, resulting in surface functionalization of the electrospun fiber. Electrospun material with varying morphologies and diameter were electrospun from 10, 20, and 30 wt.% solutions. Sessile drop measurements showed a reduction in the contact angle from 120 degrees for pure poly(D,L-lactide) with increasing PEG/PDLLA ratio. All electrospun block PEG-b-PDLLA fibers had hydrophilic properties, with contact angles below 45 degrees . The fibers were collected onto six-arm star-poly(ethylene glycol) (star-PEG) coated silicon wafers and incubated with fluorescently labeled proteins. All PEG-b-PDLLA fibers showed no detectable adsorption of bovine serum albumin (BSA) independent of their composition while a dependence between hydrophobic block length was observed for streptavidin adsorption. Fibers of block copolymers with PDLLA blocks smaller than 39 kDa showed no adsorption of BSA or streptavidin, indicating good non-fouling properties. Fibers were surface functionalized with N(epsilon)-(+)-biotinyl-L-lysine (biocytin) or RGD peptide by attaching the molecule to the PEG block during synthesis. Protein adsorption measurements, and the controlled interaction of biocytin with fluorescently labeled streptavidin, showed that the electrospun fibers were both resistant to protein adsorption and are functionalized. Fibroblast adhesion was contrasting between the unfunctionalized and RGD-coupled electrospun fabrics, confirming that the surface of the fibers was functionalized. The PEG-b-PDLLA surface functionalized electrospun fibers are promising substrates for controlling cell-material interactions, particularly for tissue-engineering applications.  相似文献   

7.
Ellipsometric studies have proved that monoclonal immunoglobulin G(IgG) against gamma-interferon (gamma-INF) and immunoglobulin fraction (Ig-fraction) of rabbit blood serum against human serum albumin (HSA) are adsorbed according to the Langmuir model on the surfaces of mirror plates of covalently modified gamma-INF or HSA, respectively. The maximum surface concentrations (Tmax) and equilibrium adsorption constants (K) for IgG and Ig-fraction are equal to 2.57 pmol/cm2 and 2 x 10(7) M-1, 3.3 mg/m2 and 0.1 cm3/micrograms, respectively. The additional treatment of gamma-INF modified surfaces with Tween-20 leads to an increase of K IgG ut to 2.7 x 10(-7) M-1 while Tmax decreases up to 1.12 pmol/cm2 which is conditioned by the blocking of protein non-specific binding sites. The role of specific and non-specific interactions of IgG and Ig-fraction with covalently immobilized antigens was studied at antibody-antigen mixture adsorption. The necessity to apply this method to quantitative determination of gamma-IHF and HSA in solutions was proved.  相似文献   

8.
Surfaces covered with polyethylene glycol (PEG) have been shown to be biocompatible because PEG yields nonimmunogenicity, nonantigenicity and protein rejection. To produce a biocompatible surface coating, we have developed a method for grafting PEG onto modified poly(vinylidene fluoride) (PVDF) films. The first step was to create carboxy groups on the PVDF surface following covalente coupling of polyethylenimine (PEI) to achieve high density of amino groups. These surface amines were reacted with formyl-terminated PEG's with various molecular weight. The modified PVDF surface was characterized by means of static contact angle measurements, infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The influence of the chain length on lysozyme repellence was investigated by means of surface-MALDI-Tof mass spectrometry (Surface-MALDI-Tof-MS). Lysozyme adsorption was significantly suppressed on the PEG 5000 modified PVDF surface.  相似文献   

9.
This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA 相似文献   

10.
Previous studies have shown that certain glow discharge treated polymers strongly retain adsorbed albumin and fibrinogen. On the basis of this phenomenon, we have investigated the possibility of immobilizing antibodies on glow discharge treated surfaces for diagnostic immunoassay applications. As a model for antibody immobilization, bovine IgG was immobilized on the following polymers: polyethylene (PE), tetrafluoroethylene glow discharge treated PE (TFE/PE), poly(ethylene terephthalate) (PET), TFE/PET, poly(tetrafluoroethylene) (PTFE), ethylene glow discharge treated PET (E/PET) and hexamethyldisiloxane glow discharge treated PET (HMDS/PET). IgG was radiolabeled with 125I and immobilized by either of the following two methods: (a) physical adsorption of IgG on untreated and glow discharge treated polymers or (b) physical adsorption of albumin followed by chemical coupling of IgG to albumin by glutaraldehyde. IgG concentration as well as adsorption times were varied in order both to optimize the immobilization conditions and to investigate the adsorption and retention mechanisms. To evaluate the efficiency of the immobilization techniques, blood plasma, Tween-20, and sodium dodecyl sulfate (SDS) were used to elute the adsorbed IgG layer. We found that IgG was successfully immobilized on the fluorocarbon glow discharge treated surfaces by using either the physical adsorption or the glutaraldehyde coupling method, although the former is more efficient than the latter method.  相似文献   

11.
This study investigated and correlated physical properties and cell interactions of copolymers obtained by a poly(ethylene glycol) (PEG)-modulated fermentation of Azotobacter vinelandii UWD. PEGs with molecular weights of 400 and 3400 Da and di(ethylene glycol) (DEG) were used to modulate the bacterial synthesis of poly(beta-hydroxybutyrate) (PHB). The PHB crystallinity was determined by wide-angle X-ray scattering (WAXS). Small-angle X-ray scattering (SAXS) showed that lamellar distances decreased between the PHB and the PHB modulated with PEG or DEG. Furthermore, the contact angle of water on the PHB/PEG polymer surfaces decreased when compared to that of PHB. The significant decrease of the contact angle and corresponding increase in surface tension, as well as significant decrease in cell adhesion, suggest the presence of hydrophilic PEG and DEG within the hydrophobic surface.  相似文献   

12.
Wettability of nonylphenol ethoxylate with four ethylene oxide groups (NP-4) on a subbituminous coal was carried out. As the concentration of NP-4 gradually increases, the contact angle firstly increases and then decreases with maximum contact angle at about critical micelle concentration (CMC) of NP-4. The monolayer adsorption behaviour of NP-4 on the model surface of Hatcher subbituminous coal was investigated by means of molecular dynamics simulations. The surfactant molecules could be detected at the water–coal interface. The water molecules are repelled and stronger hydrophobicity of the coal is obtained in the presence of NP-4, which are consistent with contact angle results at low concentration. The aggregated structure of the surfactant molecules on the coal surface in terms of head group and tail group density profiles along the perpendicular direction shows that the ethoxylate groups of the surfactant are attached at the solid surfaces. The negative interaction energy between NP-4 and the subbituminous coal surface calculated suggests that adsorption process is spontaneous. The self-diffusion coefficients results indicate that the presence of NP-4 causes higher water mobility meaning improving the hydrophobicity of low-rank coal, which is consistent with the experimental results of contact angle.  相似文献   

13.
Site specific spectroscopic techniques and differential scanning calorimetry were used to study human serum albumin (HSA) in the absence and in the presence of membranes composed of dipalmitoylphosphatidylcholine (DPPC) and poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Electron spin resonance (ESR) of a maleimide spin-label (5-MSL) covalently bound to the free sulfhydryl group at the unique cystein Cys-34 in domain I, intrinsic fluorescence of the single tryptophan Trp-214 in domain II, and extrinsic fluorescence of p-nitrophenyl anthranilate conjugated with tyrosine Tyr-411 in domain III were employed to study HSA dispersions with or without polymer-grafted membranes. On adsorbing at the DPPC membrane surfaces, domain I assumes a more loosened conformation and partitioning of the spin-labelled protein between the aqueous phase and the interfacial region of lipid membranes is observed by ESR. Domain II and III undergo a local structural arrangement which leads Trp-214 and Tyr-411 to come closer and causes intrinsic fluorescence quenching. The influence of DPPC bilayers on HSA is characterized both by a decrease of the thermal unfolding enthalpy and by a slight increase of the transition temperature, T (t), of the protein. The lipid induced effects on HSA are progressively reduced on increasing the amounts of PEG:2000-DPPE mixed with DPPC from the mushroom regime to the brush regime. Primary protein adsorption at the lipid surfaces is abolished at 1 mol% of the polymer-lipid, whereas the secondary protein adsorption at the polymer-brush leads to a further increase of both transition enthalpy and T (t) relative to the case of aqueous dispersions of HSA alone.  相似文献   

14.
This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA <IgG <laminin-1 ≤ protein mixture. Film elutability showed that 30 min of SDS interaction resulted in almost complete removal of adsorbed films. No difference in the total adsorbed amounts of individual proteins, or from the mixture, was observed between untreated and glow discharge treated titania surfaces. However, the composition of the adsorbed films from the mixture differed between the untreated and glow discharge treated substrata. On glow discharge-treated titania the fraction of HSA increased, the fraction of laminin-1 decreased and the fraction of IgG was unchanged compared to the adsorption on the untreated titania, which was attributed to protein–protein interactions and competitive/associative adsorption behaviour.  相似文献   

15.
The adsorption of BSA and fibrinogen onto plasma-polymerized di-(ethylene glycol) vinyl ether, allylamine, and maleic anhydride films were investigated in detail by surface plasmon resonance spectroscopy (SPR). The chemical properties of the plasma polymers were initially determined by the plasma deposition conditions during the generation procedure. The analysis of the chemical structure of the films and the refractive index of plasma polymers in aqueous solution was carried out using Fourier transform infrared spectroscopy and waveguide mode spectroscopy, respectively. Using water contact angle measurement, the surface wettability of plasma polymers was also characterized. These properties have a critical influence on the behavior of protein adsorption on the surface of the plasma polymers. Protein adsorption was found to depend not only on the types of functionalized groups, but also on the plasma polymer thickness since the protein molecules penetrate into the plasma polymer network bulk. According to the size of protein molecules in aqueous solution and the amount of adsorbed proteins observed by SPR, the conformational changes of proteins could be deduced.  相似文献   

16.
The development of new immunosensors based on surface-concentration-measuring devices requires a stable and reproducible immobilization of antibodies on well-characterized solid surfaces. We here report on the immobilization of immunoglobulin G (IgG) on chemically modified silica surfaces. Such surfaces may be used in various surface-oriented analytical methods. Reactive groups were introduced to the silica surfaces by chemical-vapour deposition of silane. The surfaces were characterized by ellipsometry, contact-angle measurements and scanning electron microscopy. IgG covalently bound by the use of thiol-disulphide exchange reactions, thereby controlling the maximum number of covalent bonds to the surface, was compared with IgG adsorbed on various silica surfaces. This comparison showed that the covalently bound IgG has a superior stability when the pH was lowered or incubation with detergents, urea or ethylene glycol was carried out. The result was evaluated by ellipsometry, an optical technique that renders possible the quantification of amounts of immobilized IgG. The results outline the possibilities of obtaining a controlled covalent binding of biomolecules to solid surfaces with an optimal stability and biological activity of the immobilized molecules.  相似文献   

17.
l-Histidine as pseudobiospecific ligand was immobilized onto poly(ethylene vinyl alcohol) hollow-fiber membranes to obtain an affinity support for immunoglobulin G (IgG) purification. The interaction of human IgG with the affinity membranes was studied by chromatography and equilibrium binding analysis. Adsorption was possible over a broad pH range and was found to depend strongly on the nature of the buffer ions rather than on ionic strength. With zwitterionic buffers like morpholinopropanesulfonic acid (Mops) and hydroxyethylpiperazineethanesulfonic acid (Hepes), much higher adsorption capacities were obtained than with other buffers like Tris-HCl and phosphate buffers. An inhibition analysis revealed that non-zwitterionic buffers competitively inhibit IgG binding, whereas Mops and Hepes in their zwitterionic form do not. By choosing the appropriate buffer system, it was possible to adsorb specifically different IgG subsets. The IgG molecules were found to adsorb on membrane immobilized histidine via their Fab part. Determination of dissociation constants at different temperatures allowed calculation of thermodynamic adsorption parameters. Decrease in KD with increasing temperature and a positive entropy value between 20 and 35°C (in Mops buffer) indicated that adsorption is partially governed by hydrophobic forces in that temperature range, whereas at lower temperatures, electrostatic forces are more important for adsorption.  相似文献   

18.
In order to develop a new intravenous immunoglobulin G (IgG), IgG was covalently coupled to poly(ethylene glycol) previously activated by cyanuric chloride. The poly(ethylene glycol) coupled IgG obtained was studied for physicochemical and biological properties such as molecular structure, size-exclusion chromatographic behaviour, surface activity, interfacial aggregability, heat aggregability inducing nonspecific complement activation, and antigen-binding activity. The poly(ethylene glycol) coupling to IgG increased the apparent Stokes' radius and the surface activity of IgG and stabilized IgG on heating and/or on exposure to interface, while no structural denaturation of IgG was observed. The suppressed nonspecific aggregability was interpreted mainly by difficulty in association between the modified IgG molecules. These results indicated the use of the poly(ethylene glycol)-coupled IgG as an intravenous preparation and also as an additive stabilizing intact IgG for intravenous use.  相似文献   

19.
High-density poly(ethylene glycol) (PEG) molecules are grafted onto Si surfaces in a brush-like configuration. We demonstrate that this surface is an excellent substrate for oligonucleotide immobilization. p-Maleimidophenyl isocyanate is used as a heterobifunctional cross-linker to tether thiol-modified oligonucleotides to terminal OH groups on the PEG brush. This approach gives excellent immobilization specificity and low background. The immobilized oligonucleotides show high sensitivity for the detection of complementary targets.  相似文献   

20.
In this article, surface coatings derived from homo-bifunctional tri(ethylene glycol) (EG3) and hexa(ethylene glycol) (EG6) molecules which have two terminal aldehyde groups are reported. These homo-bifunctional molecules can be used to functionalize amine-terminated surfaces through crosslinking one aldehyde group to surface amine groups, while leaving the other aldehyde group available for covalent immobilization of proteins. Best of all, after reducing remaining aldehyde groups on the surface with a reducing agent, sodium borohydride, the surface becomes oligo(ethylene glycol) (OEG)-terminated. The OEG-terminated surface can resist nonspecific protein adsorption, a feature that is often required for many biosensors and biomedical devices. Although some mixed self-assembled monolayers formed from two different organothiols also permit covalent protein immobilization and resist nonspecific protein adsorption, the procedure reported herein requires only one type of homo-bifunctional molecule and can be applied to both silicon and gold surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号