首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hornets (Vespa affinis) flying in a drone congregation area attracted drones of Apis cerana. The drones followed the hornet and were ‘manoeuvred’ towards a leaf or a tree. The hornet then rushed at one of the drones. Many attempts by the hornet to catch a drone were unsuccessful and all drones fled. After failing, the hornet returned to centre of the drone congregation area and repeated the behaviour. Only after successfully seizing of a drone did the hornet leave the drone congregation area carrying its prey. In a two-choice test in the centre of the drone congregation area, free-flying A. cerana drones preferred a hornet model to a live A. cerana queen. V. affinis apparently ‘exploits’ the intraspecific communication between queen and drones of A. cerana. Hunting of drones in the drone congregation area by V. affinis may be an example of predatory mimicry.  相似文献   

2.
The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid‐air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones’ genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone‐producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones.  相似文献   

3.
Queens of the honey bee, Apis mellifera (L.), exhibit extreme polyandry, mating with up to 45 different males (drones). This increases the genetic diversity of their colonies, and consequently their fitness. After copulation, drones leave a mating sign in the genital opening of the queen which has been shown to promote additional mating of the queen. On one hand, this signing behavior is beneficial for the drone because it increases the genetic diversity of the resulting colony that is to perpetuate his genes. On the other hand, it decreases the proportion of the drone??s personal offspring among colony members which is reducing drone fitness. We analyze the adaptiveness and evolutionary stability of this drone??s behavior with a game-theoretical model. We find that theoretically both the strategy of leaving a mating sign and the strategy of not leaving a mating sign can be evolutionary stable, depending on natural parameters. However, the signing strategy is not favored for most scenarios, including the cases that are biologically plausible in reference to empirical data. We conclude that leaving a sign is not in the interest of the drone unless it serves biological functions other than increasing subsequent queen mating chances. Nevertheless, our analysis can also explain the prevalence of such a behavior of honey bee drones by a very low evolutionary pressure for an invasion of the nonsigning strategy.  相似文献   

4.
Estimating the population size of social bee colonies in the wild is often difficult because nests are highly cryptic. Because of the honeybee (Apis mellifera) mating behaviour, which is characterized by multiple mating of queens at drone congregation areas (DCA), it is possible to use genotypes of drones caught at these areas to infer the number of colonies in a given region. However, DCAs are difficult to locate and we assess the effectiveness of an alternative sampling technique to determine colony density based on inferring male genotypes from queen offspring. We compare these methods in the same population of wild honeybees, Apis mellifera scutellata. A set of linked microsatellite loci is used to decrease the frequency of recombination among marker loci and therefore increase the precision of the estimates. Estimates of population size obtained through sampling of queen offspring is significantly larger than that obtained by sampling drones at DCAs. This difference may be due to the more extensive flying range of queens compared with drones on mating flights. We estimate that the population size sampled through queen offspring is about double that sampled through drones.  相似文献   

5.
Social insect colonies invest in reproduction and growth, buthow colonies achieve an adaptive allocation to these life-historycharacters remains an open question in social insect biology.Attempts to understand how a colony's investment in reproductionis shaped by the queen and the workers have proved complicatedbecause of the potential for queen–worker conflict overthe colony's investment in males versus females. Honeybees,in which this conflict is expected to be minimal or absent,provide an opportunity to more clearly study how the actionsand interactions of individuals influence the colony's productionand regulation of males (drones). We examined whether honeybeequeens can influence drone regulation by either allowing orpreventing them from laying drone eggs for a period of timeand then examining their subsequent tendency to lay drone andworker eggs. Queens who initially laid drone eggs subsequentlylaid fewer drone eggs than the queens who were initially preventedfrom producing drone eggs. This indicates that a colony's regulationof drones may be achieved not only by the workers, who buildwax cells for drones and feed the larvae, but also by the queen,who can modify her production of drone eggs. In order to betterunderstand how the queen and workers contribute to social insectcolony decisions, future work should attempt to distinguishbetween actions that reflect conflict over sex allocation andthose that reflect cooperation and shared control over the colony'sinvestment in reproduction.  相似文献   

6.
Five microsatellite loci were used to determine paternities in six Apis mellifera colonies headed by naturally mated queens. The last inseminating males were identified by collecting and genotyping the mating sign left in the genital tract of each queen. Significant differences in paternity frequencies were observed between males, but the proportion of worker and queen offspring sired by the last inseminating drone did not differ significantly from those of other drones. Each male kept his rank of precedence for the different cohorts, although the variance in subfamily proportions decreased over time, most notably in the colony displaying the lowest level of polyandry. These results suggest that, if sperm competition exists in the honeybee, it does not significantly increase the fitness of the last inseminating drone. The spermatozoa of the different inseminating drones are not totally mixed before they reach the spermatheca, in particular when only few males mate with the queen. The weak difference in the subfamily proportions observed between queen and worker samples confirms that nepotistic interactions are rare. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

7.
The mating system of the honeybee ( Apis mellifera ) has been regarded as one of the most panmictic in the animal kingdom, with thousands of males aggregating in drone congregation areas (DCAs) that virgin queens visit to mate with tens of partners. Although males from many colonies gather at such congregations, the temporal changes in the colonies contributing drones remain unknown. Yet, changes in the DCAs' genetic structure will ultimately determine population gene flow and effective population size. By repeatedly sampling drones from an African DCA over a period of 3 years, we studied the temporal changes in the genetic structure of a wild honeybee population. Using three sets of tightly linked microsatellite markers, we were able to reconstruct individual queen genotypes with a high accuracy, follow them through time and estimate their rate of replacement. The number of queens contributing drones to the DCA varied from 12 to 72 and was correlated with temperature and rainfall. We found that more than 80% of these queens were replaced by mostly unrelated ones in successive eight months sampling intervals, which resulted in a clear temporal genetic differentiation of the DCA. Our results suggest that the frequent long-range migration of colonies without nest-site fidelity is the main driver of this high queen turnover. DCAs of African honeybees should thus be regarded as extremely dynamic systems which together with migration boost the effective population size and maintain a high genetic diversity in the population.  相似文献   

8.
Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.  相似文献   

9.
10.
At a natural drone congregation area freeflying drones were attracted by a fast-moving queen dummy and the pursuits of drones were stereoscopically recorded (Fig. 1). The reconstruction of 192 flight paths from successfully approaching drones in chronological three dimensional sequences (Fig. 4) lead to the following results: 1. The alignment of the drone's longitudinal body axis coincides fairly well with the line connecting drone and queen (drone-queen-axis), its mean angular deviation from this line being only 14°. Angles between -5° and 5° occur most frequently (Fig. 5B). Thus, drones head straight to the queen. 2. Lateral deviations from the drone-queen-axis most frequently lie between — 30° and 30° (Fig. 5A) which corresponds to the drone's binocular visual field. 3. The drone's heading was continuously adjusted to the actual target, mean turning speed being 1890°/s. 4. The results lead to the conclusion that honeybee drones choose the shortest way to a fast and not predictably moving mate. A comparison with earlier observations suggests that a drone's mating success depends not only on his skills to win a race but also on his persistence within a group.  相似文献   

11.
A colony-level phenotype was used to map the major sex determination locus (designatedX) in the honey bee (Apis mellifera). Individual queen bees (reproductive females) were mated to single drones (fertile males) by instrumental insemination. Haploid drone progeny of an F1 queen were each backcrossed to daughter queens from one of the parental lines. Ninety-eight of the resulting colonies containing backcross progeny were evaluated for the trait ‘low brood-viability’ resulting from the production of diploid drones that were homozygous atX. DNA samples from the haploid drone fathers of these colonies were used individually in polymerase chain reactions (PCR) with 10-base primers. These reactions generated random amplified polymorphic DNA (RAPD) markers that were analyzed for cosegregation with the colony-level phenotype. One RAPD marker allele was shared by 22 of 25 drones that fathered low brood-viability colonies. The RAPD marker fragment was cloned and partially sequenced. Two primers were designed that define a sequence-tagged site (STS) for this locus. The primers amplified DNA marker fragments that cosegregated with the original RAPD marker. In order to more precisely estimate the linkage betweenX and the STS locus, another group of bees consisting of progeny from one of the low-brood viability colonies was used in segregation analysis. Four diploid drones and 181 of their diploid sisters (workers, nonfertile females) were tested for segregation of the RAPD and STS markers. The cosegregating RAPD and STS markers were codominant due to the occurrence of fragment-length alleles. The four diploid drones were homozygous for these markers but only three of the 181 workers were homozygotes (recombinants). Therefore the distance betweenX and the STS locus was estimated at 1.6 cM. An additional linked marker was found that was 6.6 cM from the STS locus.  相似文献   

12.
  1. It is often necessary to assess the density of honey bee colonies in an environment. In theory, a random sample of males obtained at a mating lek (Drone Congregation Area) can be used to infer the number of queens that contributed sons to the sample, and thereby estimate colony density based on the area from which drones are drawn to a DCA. Because of its utility and efficiency, the technique is being increasingly used. However, the accuracy of the method has never been evaluated, and there are no recommendations for sample size.
  2. Here, we infer the genotypes of 322 mother queens from the genotypes of 2329 drones caught at a single DCA using the program COLONY. We then use this realistic pool of queen genotypes to generate multiple simulated data sets of drone genotypes, varying the number of queens and sons that each queen contributed to the sample.
  3. We find that the technique provides an accurate estimate (<10% error) of the total number of families present in a drone sample, provided that queens contribute at least six drones to the sample on average. This threshold can be reduced when colony density is low. Non‐sampling error only becomes significant when queens contribute fewer than three sons on average across simulated samples.
  4. We conclude that the technique is robust and can be used with confidence provided that the sample size is adequate.
  相似文献   

13.
A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen’s polyandry is positively associated with measures of her colony’s fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry– 15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1) a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2) a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor.  相似文献   

14.
Social insect colonies display a remarkable ability to adjust investment in reproduction (i.e., production of sexuals) in accordance with environmental conditions such as season and food availability. How this feat is accomplished by the colony’s queen(s) and workers remains a puzzle. Here, I review what we have learned about this subject in the European honeybee (Apis mellifera), specifically with regard to a colony’s production of males (drones). I identify five environmental conditions that influence colony-level patterns of drone production and then define five stages of drone rearing that are accomplished by the queen and workers. Using this framework, I detail our current understanding of how the queen or workers adjust their actions at each stage of drone rearing in response to each of the environmental conditions. Future investigations of this topic in honeybees and other social insect societies will lead to a better understanding of how colonies manage to flexibly and efficiently allocate their resources under changing environmental conditions.  相似文献   

15.
Drones of stingless bee species often form distinctive congregations of up to several hundred individuals which can persist over considerable periods of time. Here we analyse the genetic structure of three drone congregations of the neotropical stingless bee Scaptotrigona mexicana employing eight microsatellite markers. Two congregations were close to each other (50 m), the third one was located more than 10 km away from them. This spatial pattern was also reflected on the genetic level : the two close congregations did not show any population sub-structuring, whereas the more distant congregation showed a significant population differentiation to both of them. Population subdifferentiation was however low with F st values (F st = 0.020 and 0.014) between the distant congregations, suggesting gene flow over larger distances mediated by the drones of S. mexicana. Based on the genotypic data we also estimated the number of colonies contributing drones to the congregations. The two joint congregations consisted of drones originating from 39,6 colonies, while the third congregation was composed of drones from 21,8 colonies, thus proving that congregations of S. mexicana are constituted of unrelated drones of multicolonial origin. Received 23 April 2007; revised 21 September 2007; accepted 2 October 2007.  相似文献   

16.
We developed a bioassay to measure the flying power of drone, in order to determine which drones could reach a drone congregation area. A wind tunnel was used to test unparasitized drones and drones slightly parasitized by one or two mites during pupal development, and counts were made of the number of spermatozoa that they produced. Drones parasitized with one mite flew as long as control drones (x= 6'55" and 6'48", respectively, P = 0.512); however, those that had been infested by two mites flew significantly less (x= 2'16", P<0.001). There was a significant positive correlation (P<0.01) between flight duration and the number of spermatozoa per drone in control group (r = 0.53), and in both the one mite (r = 0.43) and two mite (r = 0.54) groups. Drones infested during development with one or two mites produced 24 and 45% fewer sperm, respectively.  相似文献   

17.
Summary: Honey bee queens have been shown to mate with a high number of males, but the evolutionary advantage of this high degree of polyandry is still unclear. Mating data from a number of different Apis species and subspecies are needed to help explain polyandry in honey bees. Pupae of four colonies of Apis mellifera sicula from Sicily were genotyped on three polymorphic microsatellite loci. The genotypes of the queens and fathering drones from these colonies were deduced from the genotypes of the pupae. We found no evidence for polygyny, at least we can exclude more than one functional queen, even super-sister queens, if maternity contributions are equal. The four queens mated with at least 5 to 12 (mean: 9.3 - 3.0 SE) drones. We estimate the error in our determination of the mating frequency that is caused by limited genetic resolution of the marker loci to be less than 1 mating given that Hardy-Weinberg assumptions are satisfied. However, the drones the single queens mated with may be a non-random sample of the whole population, so that detection error may be more severe. The average pedigree relatedness among workers within the colonies was estimated to be 0.341. These results are within the range of those found in other A. mellifera subspecies and Apis species except A. dorsata. We speculate that mating frequency may be positively correlated with drone density.  相似文献   

18.
Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.  相似文献   

19.
G J Hunt  E Guzmán-Novoa  M K Fondrk  R E Page  Jr 《Genetics》1998,148(3):1203-1213
A study was conducted to identify quantitative trait loci (QTLs) that affect colony-level stinging behavior and individual body size of honey bees. An F1 queen was produced from a cross between a queen of European origin and a drone descended from an African subspecies. Haploid drones from the hybrid queen were individually backcrossed to sister European queens to produce 172 colonies with backcross workers that were evaluated for tendency to sting. Random amplified polymorphic DNA markers were scored from the haploid drone fathers of these colonies. Wings of workers and drones were used as a measure of body size because Africanized bees in the Americas are smaller than European bees. Standard interval mapping and multiple QTL models were used to analyze data. One possible QTL was identified with a significant effect on tendency to sting (LOD 3.57). Four other suggestive QTLs were also observed (about LOD 1.5). Possible QTLs also were identified that affect body size and were unlinked to defensive-behavior QTLs. Two of these were significant (LOD 3.54 and 5.15).  相似文献   

20.
We investigated the influence of drone size and potential reproductive quality on caste interactions by adding large drones reared in drone cells (DC drones; considered to be of higher quality) and small drones reared in worker cells (WC drones; of lower quality) to two observation colonies and monitoring worker–drone interactions and acceptance by workers. When initially introduced into the colonies more DC drones received trophallaxis, whereas more WC drones received aggression and eviction attempts from workers. Nevertheless, WC and DC drones were equally likely to be accepted by workers. For both drone types accepted individuals had slightly, but significantly greater weights than rejected males. Thus, workers discriminated between drones of different sizes and potential quality upon initial encounter, although these discriminations were not strongly associated with acceptance decisions. After drones were accepted, workers either showed no preference for interacting with WC or DC drones, or if a preference was shown it tended to favor WC drones. Compared to accepted DC drones, significantly more WC drones received grooming for longer periods of time and also spent more time engaged in all interactions with workers combined. DC and WC drones did not differ in the likelihood of receiving trophallaxis or the vibration signal, although for both interactions slightly more WC drones were recipients. Thus, workers may bias some interactions with accepted drones to favor smaller individuals with potential developmental deficiencies, in a manner that could contribute to the production of a greater total number of competitive males and increased colony reproductive output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号