首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Pesticides based on the s-triazine ring structure are widely used in cultivation of food crops. Cleavage of the s-triazine ring is an important step in the mineralization of s-triazine compounds and hence in their complete removal from the environment. Cyanuric acid amidohydrolase cleaves cyanuric acid (2,4,6-trihydroxy-s-triazine), which yields carbon dioxide and biuret; the biuret is subject to further metabolism, which yields CO2 and ammonia. The trzD gene encoding cyanuric acid amidohydrolase was cloned into pMMB277 from Pseudomonas sp. strain NRRLB-12227, a strain that is capable of utilizing s-triazines as nitrogen sources. Hydrolysis of cyanuric acid was detected in crude extracts of Escherichia coli containing the cloned gene by monitoring the disappearance of cyanuric acid and the appearance of biuret by high-performance liquid chromatography (HPLC). DEAE and hydrophobic interaction HPLC were used to purify cyanuric acid amidohydrolase to homogeneity, and a spectrophotometric assay for the purified enzyme was developed. The purified enzyme had an apparent Km of 0.05 mM for cyanuric acid at pH 8.0. The enzyme did not cleave any other s-triazine or hydroxypyrimidine compound, although barbituric acid (2,4,6-trihydroxypyrimidine) was found to be a strong competitive inhibitor. Neither the nucleotide sequence of trzD nor the amino acid sequence of the gene product exhibited a significant level of similarity to any known gene or protein.  相似文献   

2.
DNA encoding the catabolism of the s-triazines ammelide and cyanuric acid was cloned from Pseudomonas sp. strain NRRLB-12228 and Klebsiella pneumoniae 99 with, as a probe, a 4.6-kb PstI fragment from a third strain, Pseudomonas sp. strain NRRLB-12227, which also encodes these activities. In strains NRRLB-12228 and 99 the ammelide aminohydrolase (trzC) and cyanuric acid amidohydrolase (trzD) genes are located on identical 4.6-kb PstI fragments which are part of a 12.4-kb DNA segment present in both strains. Strain NRRLB-12227 also carries this 12.4-kb DNA segment, except that a DNA segment of 0.8 to 1.85 kb encoding a third enzyme, ammeline aminohydrolase (trzB), has been inserted next to the ammelide aminohydrolase gene with the accompanying deletion of 1.1 to 2.15 kb of DNA. In addition, the s-triazine catabolic genes are flanked in strain NRRLB-12227 by apparently identical 2.2-kb segments that are not present in the other two strains and that seem to cause rearrangements in adjacent DNA.  相似文献   

3.
Barbiturase, which catalyzes the reversible amidohydrolysis of barbituric acid to ureidomalonic acid in the second step of oxidative pyrimidine degradation, was purified to homogeneity from Rhodococcus erythropolis JCM 3132. The characteristics and gene organization of barbiturase suggested that it is a novel zinc-containing amidohydrolase that should be grouped into a new family of the amidohydrolases superfamily. The amino acid sequence of barbiturase exhibited 48% identity with that of herbicide atrazine-decomposing cyanuric acid amidohydrolase but exhibited no significant homology to other proteins, indicating that cyanuric acid amidohydrolase may have evolved from barbiturase. A putative uracil phosphoribosyltransferase gene was found upstream of the barbiturase gene, suggesting mutual interaction between pyrimidine biosynthesis and oxidative degradation. Metal analysis with an inductively coupled radiofrequency plasma spectrophotometer revealed that barbiturase contains approximately 4.4 mol of zinc per mol of enzyme. The homotetrameric enzyme had K(m) and V(max) values of 1.0 mm and 2.5 micromol/min/mg of protein, respectively, for barbituric acid. The enzyme specifically acted on barbituric acid, and dihydro-l-orotate, alloxan, and cyanuric acid competitively inhibited its activity. The full-length gene encoding the barbiturase (bar) was cloned and overexpressed in Escherichia coli. The kinetic parameters and physicochemical properties of the cloned enzyme were apparently similar to those of the wild-type.  相似文献   

4.
5.
The purpose of this study was to characterize the cyanuric acid amidohydrolase reaction in Ralstonia basilensis M91-3, an atrazine-mineralizing soil bacterium. This ring fission reaction is the last aromatic step in the degradative pathway of atrazine and other s-triazines. The products and molar stoichiometry of the cyanuric acid amidohydrolase reaction were one mol biuret (H2N·CO·NH·CO·NH2) and one mol CO2 per mol cyanuric acid hydrolyzed, as confirmed by 13C-NMR and gas chromatography. The optimum pH and temperature, substrate specificity, and kinetic parameters were also characterized for the purified enzyme. The native enzyme had two forms of different sizes, 204 kDa and 160 kDa. Each was a tetramer or pentamer of 44 kDa and 33 kDa, respectively.  相似文献   

6.
Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed (13)C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment.  相似文献   

7.
The purpose of this study was to characterize the cyanuric acid amidohydrolase reaction in Ralstonia basilensis M91-3, an atrazine-mineralizing soil bacterium. This ring fission reaction is the last aromatic step in the degradative pathway of atrazine and other s-triazines. The products and molar stoichiometry of the cyanuric acid amidohydrolase reaction were one mol biuret (H2N·CO·NH·CO·NH2) and one mol CO2 per mol cyanuric acid hydrolyzed, as confirmed by 13C-NMR and gas chromatography. The optimum pH and temperature, substrate specificity, and kinetic parameters were also characterized for the purified enzyme. The native enzyme had two forms of different sizes, 204?kDa and 160?kDa. Each was a tetramer or pentamer of 44?kDa and 33?kDa, respectively.  相似文献   

8.
Pseudomonas sp. strain NRRLB-12227 degrades the s-triazine melamine by a six-step pathway which allows it to use melamine and pathway intermediates as nitrogen sources. With the plasmid pLG221, mutants defective in five of the six steps of the pathway were generated. Tn5-containing-EcoRI fragments from these mutants were cloned and identified by selection for Tn5-encoded kanamycin resistance in transformants. A restriction fragment from ammelide-negative mutant RE411 was used as a probe in colony hybridization experiments to identify cloned wild-type s-triazine catabolic genes encoding ammeline aminohydrolase, ammelide aminohydrolase, and cyanuric acid amidohydrolase. These genes were cloned from total cellular DNA on several similar, but not identical, HindIII fragments, as well as on a PstI fragment and a BglII fragment. Restriction mapping and Southern hybridization analyses of these cloned DNA fragments suggested that these s-triazine catabolic genes may be located on a transposable element, the ends of which are identical 2.2-kb insertion sequences.  相似文献   

9.
TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of alpha(2) and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.  相似文献   

10.
The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria.  相似文献   

11.
Cyanuric acid hydrolase (AtzD) from Pseudomonas sp. strain ADP was purified to homogeneity. Of 22 cyclic amides and triazine compounds tested, only cyanuric acid and N-methylisocyanuric acid were substrates. Other cyclic amidases were found not to hydrolyze cyanuric acid. Ten bacteria that use cyanuric acid as a sole nitrogen source for growth were found to contain either atzD or trzD, but not both genes.  相似文献   

12.
TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of α2 and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.  相似文献   

13.
s-Triazine ring compounds are common industrial chemicals: pesticides, resin intermediates, dyes, and explosives. The fate of these compounds in the environment is directly correlated with the ability of microbes to metabolize them. Microbes metabolize melamine and the triazine herbicides such as atrazine via enzyme-catalyzed hydrolysis reactions. Hydrolytic removal of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is hydrolytically processed to yield 3 mol each of ammonia and carbon dioxide. In those cases studied, the genes underlying the hydrolytic reactions are localized to large catabolic plasmids. One such plasmid, pADP-1 from Pseudomonas sp. ADP, has been completely sequenced and contains the genes for atrazine catabolism. Insertion sequence elements play a role in constructing different atrazine catabolic plasmids in different bacteria. Atrazine chlorohydrolase has been purified to homogeneity from two sources. Recombinant Escherichia coli strains expressing atrazine chlorohydrolase have been constructed and chemically cross-linked to generate catalytic particles used for atrazine remediation in soil. The method was used for cleaning up a spill of 1,000 pounds of atrazine to attain a level of herbicide acceptable to regulatory agencies.  相似文献   

14.
We have cloned a gene (aphA) encoding acetylpolyamine amidohydrolase from Mycoplana ramosa ATCC 49678, (previously named Mycoplana bullata). A genomic library of M. ramosa was screened with an oligonucleotide probe designed from a N-terminal amino acid sequence of the enzyme purified from M. ramosa. Nucleotide sequence analysis revealed an open reading frame of 1,023 bp which encodes a polypeptide with a molecular mass of 36,337 Da. This is the first report of the structure of acetylpolyamine amidohydrolase. The aphA gene was subcloned under the control of the trc promoter and was expressed in Escherichia coli MM294. The recombinant enzyme was purified, and the enzymatic properties were characterized. Substrate specificities, Km values, and Vmax values were identical to those of the native enzyme purified from M. ramosa. In the analysis of the metal-substituted enzymes, we found that the acid limb of pH rate profiles shifts from 7.2 for the original zinc enzyme to 6.6 for the cobalt enzyme. This change suggests that the zinc atom is essential for the catalytic activity of the enzyme similarly to the zinc atom in carboxypeptidase A.  相似文献   

15.
Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease.  相似文献   

16.
Pseudomonas sp. strain ADP metabolizes atrazine to cyanuric acid via three plasmid-encoded enzymes, AtzA, AtzB, and AtzC. The first enzyme, AtzA, catalyzes the hydrolytic dechlorination of atrazine, yielding hydroxyatrazine. The second enzyme, AtzB, catalyzes hydroxyatrazine deamidation, yielding N-isopropylammelide. In this study, the third gene in the atrazine catabolic pathway, atzC, was cloned from a Pseudomonas sp. strain ADP cosmid library as a 25-kb EcoRI DNA fragment in Escherichia coli. The atzC gene was further delimited by functional analysis following transposon Tn5 mutagenesis and subcloned as a 2.0-kb EcoRI-AvaI fragment. An E. coli strain containing this DNA fragment expressed N-isopropylammelide isopropylamino hydrolase activity, metabolizing N-isopropylammelide stoichiometrically to cyanuric acid and N-isopropylamine. The 2.0-kb DNA fragment was sequenced and found to contain a single open reading frame of 1,209 nucleotides, encoding a protein of 403 amino acids. AtzC showed modest sequence identity of 29 and 25%, respectively, to cytosine deaminase and dihydroorotase, both members of an amidohydrolase protein superfamily. The sequence of AtzC was compared to that of E. coli cytosine deaminase in the regions containing the five ligands to the catalytically important metal for the protein. Pairwise comparison of the 35 amino acids showed 61% sequence identity and 85% sequence similarity. AtzC is thus assigned to the amidohydrolase protein family that includes cytosine deaminase, urease, adenine deaminase, and phosphotriester hydrolase. Similar sequence comparisons of the most highly conserved regions indicated that the AtzA and AtzB proteins also belong to the same amidohydrolase family. Overall, the data suggest that AtzA, AtzB, and AtzC diverged from a common ancestor and, by random events, have been reconstituted onto an atrazine catabolic plasmid.  相似文献   

17.
Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds   总被引:7,自引:0,他引:7  
Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s-triazine compounds than any bacterium previously characterized. The 23 s-triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N-ethyl, N-propyl, N-butyl, N-s-butyl, N-isobutyl, or N-t-butyl substituents on the s-triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC, but not to atzA, from Pseudomonas sp. strain ADP.  相似文献   

18.
AtzF, allophanate hydrolase, is a recently discovered member of the amidase signature family that catalyzes the terminal reaction during metabolism of s-triazine ring compounds by bacteria. In the present study, the atzF gene from Pseudomonas sp. strain ADP was cloned and expressed as a His-tagged protein, and the protein was purified and characterized. AtzF had a deduced subunit molecular mass of 66,223, based on the gene sequence, and an estimated holoenzyme molecular mass of 260,000. The active protein did not contain detectable metals or organic cofactors. Purified AtzF hydrolyzed allophanate with a k(cat)/K(m) of 1.1 x 10(4) s(-1) M(-1), and 2 mol of ammonia was released per mol allophanate. The substrate range of AtzF was very narrow. Urea, biuret, hydroxyurea, methylcarbamate, and other structurally analogous compounds were not substrates for AtzF. Only malonamate, which strongly inhibited allophanate hydrolysis, was an alternative substrate, with a greatly reduced k(cat)/K(m) of 21 s(-1) M(-1). Data suggested that the AtzF catalytic cycle proceeds through a covalent substrate-enzyme intermediate. AtzF reacts with malonamate and hydroxylamine to generate malonohydroxamate, potentially derived from hydroxylamine capture of an enzyme-tethered acyl group. Three putative catalytically important residues, one lysine and two serines, were altered by site-directed mutagenesis, each with complete loss of enzyme activity. The identity of a putative serine nucleophile was probed using phenyl phosphorodiamidate that was shown to be a time-dependent inhibitor of AtzF. Inhibition was due to phosphoroamidation of Ser189 as shown by liquid chromatography/matrix-assisted laser desorption ionization mass spectrometry. The modified residue corresponds in sequence alignments to the nucleophilic serine previously identified in other members of the amidase signature family. Thus, AtzF affects the cleavage of three carbon-to-nitrogen bonds via a mechanism similar to that of enzymes catalyzing single-amide-bond cleavage reactions. AtzF orthologs appear to be widespread among bacteria.  相似文献   

19.
Hydroxyatrazine [2-(N-ethylamino)-4-hydroxy-6-(N-isopropylamino)-1,3,5-triazine] N-ethylaminohydrolase (AtzB) is the sole enzyme known to catalyze the hydrolytic conversion of hydroxyatrazine to N-isopropylammelide. AtzB, therefore, serves as the point of intersection of multiple s-triazine biodegradative pathways and is completely essential for microbial growth on s-triazine herbicides. Here, atzB was cloned from Pseudomonas sp. strain ADP and its product was purified to homogeneity and characterized. AtzB was found to be dimeric, with subunit and holoenzyme molecular masses of 52 kDa and 105 kDa, respectively. The k(cat) and K(m) of AtzB with hydroxyatrazine as a substrate were 3 s(-1) and 20 microM, respectively. Purified AtzB had a 1:1 zinc-to-subunit stoichiometry. Sequence analysis revealed that AtzB contained the conserved mononuclear amidohydrolase superfamily active-site residues His74, His76, His245, Glu248, His280, and Asp331. An intensive in vitro investigation into the substrate specificity of AtzB revealed that 20 of the 51 compounds tested were substrates for AtzB; this allowed for the identification of specific substrate structural features required for catalysis. Substrates required a monohydroxylated s-triazine ring with a minimum of one primary or secondary amine substituent and either a chloride or amine leaving group. AtzB catalyzed both deamination and dechlorination reactions with rates within a range of one order of magnitude. This differs from AtzA and TrzN, which do not catalyze deamination reactions, and AtzC, which is not known to catalyze dechlorination reactions.  相似文献   

20.
The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号