首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Polyhedral inclusion body protein (PIBP), harvested from the nuclear polyhedrosis virus (NPV) infecting the gypsy moth, Porthetria dispar, illicits the hemagglutination of chicken erythrocytes. Antisera to PIBP, polyhedral inclusion bodies (PIB), and virions (RODS) from the NPV's infecting P. dispar and the European Pine Sawfly, Neodiprion sertifer, inhibits hemagglutination when utilized to neutralize the PIBP from P. dispar. The crossreactivity of antisera to viral components from N. sertifer, a hymenopteran insect, with viral antigens from P. dispar, a lepidopteran insect, demonstrates a serological relationship exists between two viruses which have widely separated host ranges.  相似文献   

2.
K. Katagiri 《BioControl》1969,14(2):203-214
In Japan, two different serious defoliators were controlled by viruses:Dendrolimus spectabilis using cytoplasmic polyhedrosis virus andLymantria fumida using cytoplasmic and nuclear polyhedrosis viruses. For controllingD. spectabilis, good results were obtained when the spraying was done against old larvae of intermediate population density. AgainstL. fumida, a mixed suspension of native nuclear and cytoplasmic polyhedrosis viruses was sprayed at the early stage. The epizootic was initiated earlier than being supposed, and the population collapsed.  相似文献   

3.
Comparative studies were performed on the replication of the Autographa californica nuclear polyhedrosis virus in cell lines from Estigmene acrea, BTI-EAA; Lymantria dispar, IPLB-LD64BA; Mamestra brassicae, IZD-MB0503; Spodoptera frugiperda, IPLB-SF1254; and Trichoplusia ni, TN-368. Significant differences were observed in the amount of virus obtained from the cell lines, with M. brassicae and T. ni producing more polyhedra than the other lines. These two cell lines also produced nonoccluded virus most rapidly, followed by S. frugiperda, E. acrea, and L. dispar. Sensitivities of the cell lines to infection by the virus, as determined by plaque formation, followed the same pattern, with M. brassicae being most sensitive and L. dispar least so. The T. ni cell line produced polyhedra which were more pathogenic to T. ni larvae than those from the other cells. These differences have important implications in the application of cell cultures in the development of microbial insecticides.  相似文献   

4.
Thin sections of polyhedra obtained from gipsy moth larvae infected with P. dispar virus and from silkworm larvae infected with B. mori virus revealed viral particles contained within a pseudohexagonal, macromolecular, paracrystalline lattice. The gipsy moth virus occurs in bundles of one to eight rods enclosed by a limiting membrane. The particles of the silkworm virus, although generally occurring singly, also possess a limiting membrane. The macromolecules appear to be dense, discrete particles when cross-sectioned and to form dense bands by superimposition when longitudinally or obliquely sectioned at certain angles. Calculations of macromolecular size have been made.  相似文献   

5.
6.
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors.  相似文献   

7.
昆虫质多角体病毒研究的若干新进展   总被引:7,自引:1,他引:6  
质多角体病毒隶属呼肠孤病毒科质多角体病毒属,病毒粒子为二十面体球形颗粒,具有3~5种结构蛋白,基因组由10或11个节段双链RNA构成。按病毒基因组RNA片段在聚丙烯酰胺或琼脂糖凝胶中电泳图谱的差异,将质多角体病毒分为15个电泳型。随着RNA病毒序列测定策略的逐步成熟与完善,质多角体病毒的序列测定方面取得一定的进展,家蚕质多角体病毒1的两个毒株(H株和I株),舞毒蛾质多角体病毒1和14,及粉纹夜蛾质多角体病毒15的基因组全序列得到了测定,但质多角体病毒的进化与起源的研究因缺乏足够的遗传信息仍受到限制。  相似文献   

8.
Myeloblastosis-associated virus (MAV)-2(0), a virus which was derived from avian myeloblastosis virus and induced a high incidence of osteopetrosis, was compared with avian lymphomatosis virus 5938, a recent field isolate which induced a high incidence of lymphomatosis. The following information was obtained. (i) MAV-2(0) induced osteopetrosis, nephroblastoma, and a very low incidence of hepatocellular carcinoma. No difference was seen in the oncogenic spectrum of end point and plaque-purified MAV-2(0). (ii) 125I-labeled RNA sequences from MAV-2(0) formed hybrids with DNA extracted from osteopetrotic bone at a rate suggesting five proviral copies per haploid cell genome. The extent of hybridization of MAV-2(0) RNA with DNA from osteopetrotic tissue was more extensive (87%) than was observed in reactions with DNA from uninfected chicken embryos (52%). (iii) Competition of unlabeled viral RNA in hybridization reactions between the radioactive RNA from the two viruses and their respective proviral sequences present in tumor tissues showed that 15 to 20% of the viral sequences detected in these reactions were unshared. In contrast, no differences were detected in competition analyses of RNA sequences from the two viruses detected in DNA of normal chicken cells. (iv) MAV-2(0) 35S RNA was indistinguishable in size from avian lymphomatosis virus 5938 35S RNA by polyacrylamide gel electrophoresis.  相似文献   

9.
INFLUENZA virus is one of the few viruses in which replication is inhibited by the antimetabolite actinomycin D (AM-D)1–4, which inhibits DNA-dependent RNA synthesis in mammalian cells5. It has been reported that the growth of fowl plague virus (FPV) in virus-transformed hamster cells is less sensitive to AM-D6,7. We have examined the sensitivity of FPV to AM-D to see whether it is related to differences in the oncogenic properties of tumour cells. We found that in cells transformed by polyoma virus (PV) and also in cells transformed by methylcholanthrene, although no infectious virus was produced the cells synthesized viral haemagglutinin (HA). It was only the cell-associated HA, however, that was affected by AM-D and not that released by the cells.  相似文献   

10.
Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affect the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C.  相似文献   

11.
It was reported previously that two spherical flacherie viruses of silkworm, FVS I and FVS II, had been isolated from flacherie silkworm larvae and the nucleic acid of FVS II was RNA as suggested by the experiments of incorporation of [3H]-uracil. In this paper, it has been confirmed by biochemical methods that the nucleic acid of FVS I and FVS II is RNA. FVS I and FVS II were labeled with 32P in flacherie silkworms, and the viruses were analyzed by sucrose density gradient centrifugation. When the 32P-labeled compound in the viruses was treated with 0.5 n KOH, the acid-insoluble 32P-labeled compound changed to acid-soluble compounds. It was determined by paper chromatography and ion-exchange column chromatography that the alkali-decomposed compounds included four ribonucleotides. Therefore, the viral nucleic acid of FVS I and FVS II was determined to be RNA. The correlations between FVS I and FVS II particles were discussed, and it was suggested that FVS I and FVS II might be closely related or were the same viral species.  相似文献   

12.
RNA extracted from purified rinderpest virus was characterised by sucrose gradient sedimentation and polyacrylamide gel electrophoresis. The predominant virion RNA species had a sedimentation constant of 46S and its estimated molecular weight was 4.8 × 106 daltons. Consistently high amounts of UMP and AMP were detected. The melting-temperature profile of the virion RNA suggested absence of secondary structure. The effect of actionomycin D on the replication of rinderpest virus in Vero cells was studied by following the viral RNA synthesis using labelled uridine as well as by infectivity titration. The viral RNA synthesis was not affected until 12 h following infection and was inhibited thereafter between 18 and 48 h to an extent of 25% at 5 and 10 Μg levels of the drug. A 100 to 1000-fold reduction in the infectivity titres was observed in the presence of the drug. These results suggest that actinomycin D inhibits rinderpest viral RNA replication. Sedimentation analysis of viral RNA extracted from drug-treated cultures showed inhibition of the genome RNA of rinder-pest virus.  相似文献   

13.
Antisera were produced against nucleocapsids, NP-40 detergent soluble proteins, or polyhedral protein of the multiply embedded nuclear polyhedrosis virus (MNPV) of Autographa californica, nucleocapsids of Trichoplusia ni singly embedded virus (SNPV), and polyhedral protein of Lymantria dispar MNPV. Antigens consisting of nucleocapsids, NP-40 soluble proteins, and polyhedral protein were prepared from A. californica MNPV, T. ni MNPV, L. dispar MNPV, Rachiplusia ou MNPV, T. ni SNPV, and Pseudoplusia includens SNPV. Radial immunodiffusion patterns formed with Plusiinae nucleocapsid antigens and antiserum to nucleocapsids of A. californica MNPV or T. ni SNPV revealed a distinction between multiply and singly embedded viruses. The same alignment of Plusiinae viruses was observed in reactions between A. californica NP-40 soluble protein antiserum and the NP-40 soluble protein fractions from the Plusiinae NPVs. There were no reactions between the Plusiinae SNPV nucleocapsid antigens and the A. californica MNPV nucleocapsid antiserum. However, there were faint precipitin bands between MNPV nucleocapsid antigens and T. ni SNPV nucleocapsid antiserum. Each of the polyhedral protein fractions from the Plusiinae formed a single precipitin band with the antiserum to polyhedral protein of either A. californica or L. dispar. The precipitin bands formed with the A. californica antiserum by polyhedral proteins of T. ni SNPV, P. includens SNPV, and R. ou MNPV were confluent, and shared partial identity with those formed by A. californica MNPV and T. ni MNPV. All precipitin bands formed by Plusiinae polyhedral proteins against antiserum to L. dispar polyhedral protein were confluent, and shared partial identity with that formed by L. dispar polyhedral protein.  相似文献   

14.
A. Magnoler 《BioControl》1970,15(4):407-412
SevenLymantria spp. viruses from widely separated sources were used in a screening test for virulence. Laboratory data show thatLymantria dispar L. cytoplasmic-polyhedrosis virus of Japan, and the nuclear-polyhedrosis virus of Connecticut (U.S.A.) are more virulent than other five viruses when tested on the larvae of the gypsy moth. The nuclear-and cytoplasmic-polyhedrosis viruses ofLymantria fumida Btl. were also infectious forL. dispar larvae.
Résumé On a comparé au laboratoire la virulence de 7 souches différentes de virus des polyédroses nucléaire et cytoplasmique isolées deLymantria spp. Les essais effectués par contamination de la nourriture montrent que les chenilles deLymantria dispar L. sont sensibles à tous les virus employés. Les données permettent d’établir que la souche américaine de virus de la polyédrose nucléaire et la souche japonaise de virus cytoplasmique deL. dispar sont les plus virulentes.


Presented at the 1st meeting of the “Working Group onLymantria dispar, O. I. L. B.”, Tempio Pausania, Italy, October 16–17, 1969.  相似文献   

15.
Home-field advantage (HFA) hypothesis regarding litter decomposition states that litter is decomposed more rapidly in the habitat from which it is derived (i.e., home) than in other habitat (i.e., away) due to local adaptation of soil decomposers. We tested the HFA hypothesis regarding decomposition of leaf litter, insect frass, and their mixtures, using laboratory incubation of leaf litter from an evergreen (Pinus densiflora) and a deciduous (Quercus acutissima) tree species, frass excreted by two insect herbivores (Dendrolimus spectabilis and Lymantria dispar) fed on one of the two trees, and soil collected underneath the two trees. We found evidence that decomposers in each soil were specialized to decompose the litter derived from the tree species above them, indicating that the HFA occurred in litter decomposition. In contrast, the HFA was not detected in the decomposition of insect frass or litter-frass mixtures. Mixing with D. spectabilis frass non-additively decelerated, while mixing with L. dispar frass non-additively accelerated, decomposition of the mixtures, independent of soil and litter types. These indicate that the presence of insect herbivores may make it difficult to form and maintain a decomposer community specialized to a certain leaf litter, and that it may consequently cancel or weaken HFA in litter decomposition.  相似文献   

16.
How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its host L. dispar. L. dispar exhibits midgut-based and systemic, age-dependent resistance to LdMNPV within the fourth instar; the LD50 in newly molted larvae is approximately 18-fold lower than in mid-instar larvae (48-72 h post-molt). We examined the role of the immune system in systemic resistance by measuring differences in hemocyte immunoresponsiveness to foreign targets, hemolymph phenoloxidase (PO) and FAD-glucose dehydrogenase (GLD) activities, and melanization of infected tissue culture cells. Mid-instar larvae showed a higher degree of hemocyte immunoresponsiveness, greater potential PO activity (pro-PO) at the time the virus is escaping the midgut to enter the hemocoel (72 h post-inoculation), greater GLD activity, and more targeted melanization of infected tissue, which correlate with reduced viral success in the host. These findings support the hypothesis that innate immune responses can play an important role in anti-viral defenses against baculoviruses and that the success of these defenses can be age-dependent.  相似文献   

17.
Short interfering RNAs (siRNAs) that target viral genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, there is the potential for viral escape, particularly with a highly mutable target such as HIV-1. We present a novel strategy for anticipating and preventing viral escape using second-generation siRNAs. The evolutionary capacity of HIV-1 was tested by exerting strong selective pressure on a highly conserved sequence in the HIV-1 genome. We assayed the antiviral efficacy of five overlapping siRNAs directed against an essential region of the HIV-1 protease. Serial viral transfers in U87-CD4-CXCR4 cells were performed using four of the siRNAs. This procedure was repeated until virus breakthrough was detected. After several serial culture passages, resistant virus with a single point mutation in the targeted region was detected in the culture supernatants. The emergence of resistant virus was confirmed by molecular cloning and DNA sequencing of viral RNA. The most common escape route was the D30N mutation. Importantly, the addition of a second-generation siRNA that matched the D30N mutation restored viral inhibition and delayed development of escape variants. Passages performed with both siRNAs prevented the emergence of the D30N escape mutant and forced the virus to develop new escape routes. Thus, second-generation siRNAs can be used to block escape from RNA interference (RNAi) and to search for new RNAi escape routes. The protocol described here may be useful for exploring the sequence space available for HIV-1 evolution and for producing attenuated or deleterious viruses.  相似文献   

18.
19.
Nucleic Acid Homology of Murine Type-C Viral Genes   总被引:3,自引:3,他引:0       下载免费PDF全文
The nucleic acid sequence homology between various murine, endogenous type-C viruses (three host range classes of BALB/c virus, the AT-124 virus, and the CCL 52 virus) and two laboratory strains of murine leukemia virus (Rauscher and Kirsten) was determined by DNA:RNA hybridization. The viral sequences exhibit varying degrees of partial homology. DNA:DNA hybridizations were performed between [3H]DNA probes prepared from N- and X-tropic BALB/c endogenous viruses and cellular DNAs from BALB/c, NIH Swiss, and AKR inbred mouse strains as well as from California feral mice and the Asian mouse subspecies Mus musculus molossinus and M. musculus castaneus. All of these strains of mice are shown to possess multiple (six to seven per haploid genome), partially related copies of type-C virogenes in their DNAs. Thermal melting profiles of the DNA:RNA and DNA:DNA hybrids suggest that the partial homology of the viral nucleic acid sequences is the result of base alterations throughout the viral genomes, rather than the loss of discrete segments of viral sequences.  相似文献   

20.
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号