首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multilocus sequence typing (MLST) has been applied to 266 Campylobacter jejuni isolates, mainly from veterinary sources, including cattle, sheep, poultry, pigs, pets, and the environment, as well as isolates from human cases of campylobacteriosis. The populations of veterinary and human isolates overlap, suggesting that most veterinary sources should be considered reservoirs of pathogenic campylobacters. There were some associations between source and sequence type complex, indicating that host or source adaptation may exist. The pig isolates formed a distinct group by MLST and may well represent a potential pig-adapted clone of C. jejuni. A subset (n = 82) of isolates was reanalyzed with a second MLST scheme which provided a unique set of isolates that had been analyzed at a total of 12 loci. The distribution of isolates among the complexes in each of the two schemes was similar but not identical. In addition to isolates from human outbreaks, one group of isolates that were not epidemiologically linked was also identical at all 12 loci. This group of isolates is believed to represent another stable strain of C. jejuni.  相似文献   

2.
Campylobacter jejuni is the most common cause of bacterial gastroenteritis in Luxembourg, with a marked seasonal peak during summer. The majority of these infections are thought to be sporadic, and the relative contribution of potential sources and reservoirs is still poorly understood. We monitored human cases from June to September 2006 (n = 124) by molecular characterization of isolates with the aim of rapidly detecting temporally related cases. In addition, isolates from poultry meat (n = 36) and cattle cecal contents (n = 48) were genotyped for comparison and identification of common clusters between veterinary and human C. jejuni populations. A total of 208 isolates were typed by sequencing the fla short variable region, macrorestriction analysis resolved by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). We observed a high diversity of human strains during a given summer season. Poultry and human isolates had a higher diversity of sequence types than isolates of bovine origin, for which clonal complexes CC21 (41.6%) and CC61 (18.7%) were predominant. CC21 was also the most common complex found among human isolates (21.8%). The substantial concordance between PFGE and MLST results for this last group of strains suggests that they are clonally related. Our study indicates that while poultry remains an important source, cattle could be an underestimated reservoir of human C. jejuni cases. Transmission mechanisms of cattle-specific strains warrant further investigation.  相似文献   

3.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

4.
Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni.  相似文献   

5.
In this study, 1208 Campylobacter jejuni and C. coli isolates from humans and 400 isolates from chicken, collected in two separate periods over 12 years in The Netherlands, were typed using multilocus sequence typing (MLST). Statistical evidence was found for a shift of ST frequencies in human isolates over time. The human MLST data were also compared to published data from other countries to determine geographical variation. Because only MLST typed data from chicken, taken from the same time point and spatial location, were available in addition to the human data, MLST datasets for other Campylobacter reservoirs from selected countries were used. The selection was based on the degree of similarity of the human isolates between countries. The main aim of this study was to better understand the consequences of using non-local or non-recent MLST data for attributing domestically acquired human Campylobacter infections to specific sources of origin when applying the asymmetric island model for source attribution. In addition, a power-analysis was done to find the minimum number of source isolates needed to perform source attribution using an asymmetric island model. This study showed that using source data from other countries can have a significant biasing effect on the attribution results so it is important to carefully select data if the available local data lack in quality and/or quantity. Methods aimed at reducing this bias were proposed.  相似文献   

6.
Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.  相似文献   

7.
Multilocus sequence typing (MLST) and antibiotic resistance patterns of Campylobacter jejuni and Campylobacter coli from retail chicken meat showed high overlap with isolates collected at slaughterhouses, indicating little selection along the production chain. They also showed significant common sequence types with human clinical isolates, revealing chicken meat as a likely source for human infection.  相似文献   

8.
Campylobacter jejuni is one of the most common bacterial causes of human gastroenteritis, and recent findings suggest that turkeys are an important reservoir for this organism. In this study, 80 C. jejuni isolates from eastern North Carolina were characterized for resistance to nine antimicrobials, and strain types were determined by fla typing, pulsed-field gel electrophoresis (PFGE) with SmaI and KpnI, and (for 41 isolates) multilocus sequence typing (MLST). PFGE analysis suggested that many of the isolates (37/40 [ca. 93%]) in a major genomic cluster had DNA that was partially methylated at SmaI sites. Furthermore, 12/40 (30%) of the isolates in this cluster were completely resistant to digestion by KpnI, suggesting methylation at KpnI sites. MLST of 41 isolates identified 10 sequence types (STs), of which 4 were new. Three STs (ST-1839, ST-2132 and the new ST-2934) were predominant and were detected among isolates from different farms. The majority of the isolates (74%) were resistant to three or more antimicrobials, and resistance to ciprofloxacin was common (64%), whereas resistance to the other drug of choice for treatment of human campylobacteriosis, erythromycin, was never encountered. Most (33/34) of the kanamycin-resistant isolates were also resistant to tetracycline; however, only ca. 50% of the tetracycline-resistant isolates were also kanamycin resistant. Isolates with certain antimicrobial resistance profiles had identical or closely related strain types. Overall, the findings suggest dissemination of certain clonal groups of C. jejuni isolates in the turkey production industry of this region.  相似文献   

9.

Background

Previous studies have sought to identify a link between the distribution of variable genes amongst isolates of Campylobacter jejuni and particular host preferences. The genomic sequence data available currently was obtained using only isolates from human or chicken hosts. In order to identify variable genes present in isolates from alternative host species, five subtractions between C. jejuni isolates from different sources (rabbit, cattle, wild bird) were carried out, designed to assess genomic variability within and between common multilocus sequence type (MLST) clonal complexes (ST-21, ST-42, ST-45 and ST-61).

Results

The vast majority (97%) of the 195 subtracted sequences identified had a best BLASTX match with a Campylobacter protein. However, there was considerable variation within and between the four clonal complexes included in the subtractions. The distributions of eight variable sequences, including four with putative roles in the use of alternative terminal electron acceptors, amongst a panel of C. jejuni isolates representing diverse sources and STs, were determined.

Conclusion

There was a clear correlation between clonal complex and the distribution of the metabolic genes. In contrast, there was no evidence to support the hypothesis that the distribution of such genes may be related to host preference. The other variable genes studied were also generally distributed according to MLST type. Thus, we found little evidence for widespread horizontal gene transfer between clonal complexes involving these genes.  相似文献   

10.
We analyzed 100 Campylobacter spp. isolates (C. jejuni and C. coli) from Grenada, Puerto Rico and Alabama, which were collected from live broilers or retail broiler meat. We analyzed these isolates with four molecular typing methods: restriction fragment length polymorphism of the flaA gene (flaA-RFLP), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and automated repetitive extragenic palindromic polymerase chain reaction (REP-PCR) using the DiversiLab system. All methods performed similarly for the typing of C. jejuni and C. coli. The DNA extraction method appears to influence the results obtained with REP-PCR. This method was better for the typing of C. jejuni than C. coli, however both REP-PCR and flaA-RFLP generated types that were indistinguishable between C. jejuni and C. coli and appeared to be random, without any relationship to species, location, or source of isolates. PFGE and MLST generated typing results that had a better correlation with the geographic location of the isolates and showed higher concordance with the Wallace coefficient. The adjusted Rand coefficient did not show higher concordance among the methods, although the PFGE/MLST combination exhibited the highest concordance. PFGE and MLST revealed a better discriminatory power for C. coli isolates than REP-PCR or flaA-RFLP. The use of readily available online tools to calculate the confidence interval of the Simpson's index of diversity and the adjusted Rand and Wallace coefficients helped estimate the discriminatory power of typing methods. Further studies using different C. jejuni and C. coli strains may expand our understanding of the benefits and limitations of each of these typing methods for epidemiological studies of Campylobacter spp.  相似文献   

11.
Campylobacter is a food-borne zoonotic pathogen that causes human gastroenteritis worldwide. Campylobacter bacteria are commensal in the intestines of many food production animals, including ducks and chickens. The objective of the study was to determine the prevalence of Campylobacter species in domestic ducks, and the agar dilution method was used to determine resistance of the isolates to eight antibiotics. In addition, multilocus sequence typing (MLST) was performed to determine the sequence types (STs) of selected Campylobacter isolates. Between May and September 2012, 58 duck farms were analyzed, and 56 (96.6%) were positive for Campylobacter. Among the isolates, 82.1% were Campylobacter jejuni, 16.1% were C. coli, and one was unidentified by PCR. Of the 46 C. jejuni isolates, 87.0%, 10.9%, and 21.7% were resistant to ciprofloxacin, erythromycin, and azithromycin, respectively. Among the C. coli isolates, all 9 strains were resistant to ampicillin, and 77.8% and 33.3% were resistant to ciprofloxacin and azithromycin, respectively. The majority of the Campylobacter isolates were classified as multidrug resistant. Twenty-eight STs were identified, including 20 STs for C. jejuni and 8 STs for C. coli. The most common clonal complexes in C. jejuni were the ST-21 complex and the ST-45 complex, while the ST-828 complex predominated in C. coli. The majority of isolates were of STs noted in ducks and humans from earlier studies, along with seven STs previously associated only with human disease. These STs overlapped between duck and human isolates, indicating that Campylobacter isolates from ducks should be considered potential sources of human infection.  相似文献   

12.
To compare the genetic profiles of Campylobacter jejuni (C. jejuni) isolates of broiler and turkey reservoirs sampled in Semnan City, Iran, 60 C. jejuni isolates (30 from broilers and 30 from turkeys) were genotyped by RAPD-PCR- and ERIC-PCR-based methods. RAPD-PCR identified 6 genotypes and ERIC-PCR identified 21 genotypes among the 60 C. jejuni isolates. Both techniques were able to discriminate the C. jejuni isolates. Results demonstrated that one single genotype was identical to broiler and one single genotype was identical to turkey isolates at 83% similarity level in RAPD UPGMA clustering. Also, one single profile was identical to turkey isolates at 73% similarity level in ERIC-PCR clustering. The existence of high genetic similarity in some C. jejuni isolates from both hosts suggests the presence of some overlap between isolates from different sources and boosts the power of RAPD-PCR- and ERIC-PCR-based methods in discriminating C. jejuni isolates from various sources.  相似文献   

13.
Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%]), and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST), but certain predominant MLST lineages were identified. ST-45 clonal complex (CC) accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3%) delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types) generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU) countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.  相似文献   

14.
Environmental pollution often accompanies the expansion and urbanization of human populations where sewage and wastewaters commonly have an impact on the marine environments. Here, we explored the potential for faecal bacterial pathogens, of anthropic origin, to spread to marine wildlife in coastal areas. The common zoonotic bacterium Campylobacter was isolated from grey seals (Halichoerus grypus), an important sentinel species for environmental pollution, and compared to isolates from wild birds, agricultural sources and clinical samples to characterize possible transmission routes. Campylobacter jejuni was present in half of all grey seal pups sampled (24/50 dead and 46/90 live pups) in the breeding colony on the Isle of May (Scotland), where it was frequently associated with histological evidence of disease. Returning yearling animals (19/19) were negative for C. jejuni suggesting clearance of infection while away from the localized colony infection source. The genomes of 90 isolates from seals were sequenced and characterized using a whole‐genome multilocus sequence typing (MLST) approach and compared to 192 published genomes from multiple sources using population genetic approaches and a probabilistic genetic attribution model to infer the source of infection from MLST data. The strong genotype‐host association has enabled the application of source attribution models in epidemiological studies of human campylobacteriosis, and here assignment analyses consistently grouped seal isolates with those from human clinical samples. These findings are consistent with either a common infection source or direct transmission of human campylobacter to grey seals, raising concerns about the spread of human pathogens to wildlife marine sentinel species in coastal areas.  相似文献   

15.
Aims: To determine the diversity and population structure of Campylobacter jejuni (C. jejuni) isolates from Danish patients and to examine the association between multilocus sequence typing types and different clinical symptoms including gastroenteritis (GI), Guillain–Barré syndrome (GBS) and reactive arthritis (RA). Methods and Results: Multilocus sequence typing (MLST) was used to characterize 122 isolates, including 18 from patients with RA and 8 from patients with GBS. The GI and RA isolates were collected in Denmark during 2002–2003 and the GBS isolates were obtained from other countries. In overall, 51 sequence types (STs) were identified within 18 clonal complexes (CCs). Of these three CCs, ST‐21, ST‐45 and ST‐22 clonal complexes accounted for 64 percent of all isolates. The GBS isolates in this study significantly grouped into the ST‐22 clonal complex, consistent with the PubMLST database isolates. There was no significant clustering of the RA isolates. Conclusions: Isolates from Denmark were found to be highly genetically diverse. GBS isolates grouped significantly with clonal complex ST‐22, but the absence of clustering of RA isolates indicated that the phylogenetic background for this sequela could not be reconstructed using variation in MLST loci. Possibly, putative RA‐associated genes may vary, by recombination or expression differences, independent of MLST loci. Significance and Impact of the Study: MLST typing of C. jejuni isolates from Danish patients with gastroenteritis confirmed that the diversity of clones in Denmark is comparable to that in other European countries. Furthermore, a verification of the grouping of GBS isolates compared to RA isolates provides information about evolution of the bacterial population resulting in this important sequela.  相似文献   

16.
Thermotolerant Campylobacter spp. are frequently the cause of human gastroenteritis and have assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to determine the prevalence and genotypes of Campylobacter spp. in dairy herds and to investigate the possible sources of bulk milk contamination. Bulk milk from dairy herds (n = 282) was cultured for Campylobacter spp. and Enterobacteriaceae. At three Campylobacter jejuni-positive farms, bovine feces, pigeon intestines, milk, and water points were also investigated. Isolates were identified by PCR and genotyped using multilocus sequence typing (MLST). C. jejuni was detected in 34 (12%) bulk milk samples. The strains belonged to 14 sequence types, and the most common clonal complexes were CC-21, CC-48, and CC-403. No association was demonstrated between the presence of C. jejuni and high levels of Enterobacteriaceae in bulk milk. At the three farms examined, C. jejuni was isolated from bovine feces (25/82 [30.5%]), pigeon intestines (13/60 [21.7%]), bulk milk (10/24 [41.7%]), and water points (4/16 [25%]). MLST revealed lineages that were common between milk and bovine feces but distinct between cattle and pigeons. In one herd, C. jejuni with the same genotype was isolated repeatedly from bulk milk and a cow with an udder infection. Our results showed a high prevalence of C. jejuni in bulk milk and suggested that udder excretion, in addition to fecal matter, may be a route of bulk milk contamination. MLST analysis indicated that pigeons are probably not relevant for the transmission of C. jejuni to cattle and for milk contamination.  相似文献   

17.
Aims: To get an overview of genotypes and antibiotic resistances in Swiss Campylobacter jejuni implicated in human gastroenteritis and to examine the association with isolates from chickens. Methods and Results: Multilocus sequence typing (MLST) and flaB typing were applied to 136 human clinical isolates. Phenotypic resistance to 12 antimicrobials and genotypic resistance to macrolides and quinolones were determined. MLST resulted in 35 known and six new sequence types (ST). The flaB analysis revealed 35 different types, which – in combination with MLST – increased the resolution of the typing approach. Resistance to quinolones, tetracycline and ampicillin was found in 37·5, 33·1 and 8·1% of the isolates, respectively, whereas macrolide resistance was found only once. Genotypic and phenotypic resistance correlated in all cases. A comparison to Camp. jejuni isolated from slaughtered chickens was performed. While 86% of the quinolone‐sensitive human isolates showed overlapping MLST‐flaB types with those of chicken origin, resistant strains showed only 39% of matching types. Conclusion: Mainly quinolone‐sensitive Camp. jejuni strains implicated in human campylobacteriosis showed matching genotypes with isolates originating from chickens. Significance and Impact of the Study: A large proportion of human cases in Switzerland are likely to originate from domestic chickens, confirming that prevention measures in the poultry production are important.  相似文献   

18.

Background  

Campylobacter jejuni is the most common bacterial cause of human gastroenteritis worldwide. Due to the sporadic nature of infection, sources often remain unknown. Multilocus sequence typing (MLST) has been successfully applied to population genetics of Campylobacter jejuni and mathematical modelling can be applied to the sequence data. Here, we analysed the population structure of a total of 250 Finnish C. jejuni isolates from bovines, poultry meat and humans collected in 2003 using a combination of Bayesian clustering (BAPS software) and phylogenetic analysis.  相似文献   

19.
Campylobacter jejuni is a leading cause of human gastroenteritis worldwide. This study aimed at a better understanding of the genetic diversity of this pathogen disseminated in Japan. We performed multilocus sequence typing (MLST) of Campylobacter jejuni isolated from different sources (100 human, 61 poultry, and 51 cattle isolates) in Japan between 2005 and 2006. This approach identified 62 sequence types (STs) and 19 clonal complexes (CCs), including 11 novel STs. These 62 STs were phylogenetically divided into 6 clusters, partially exhibiting host association. We identified a novel ST (ST-4526) that has never been reported in other countries; a phylogenetic analysis showed that ST-4526 and related STs showed distant lineage from the founder ST, ST-21 within CC-21. Comparative genome analysis was performed to investigate which properties could be responsible for the successful dissemination of ST-4526 in Japan. Results revealed that three representative ST-4526 isolates contained a putative island comprising the region from Cj0737 to Cj0744, which differed between the ST-4526 isolates and the reference strain NCTC11168 (ST-43/CC-21). Amino acid sequence alignment analyses showed that two of three ST-4526 isolates expressed 693aa- filamentous hemagglutination domain protein (FHA), while most of other C. jejuni strains whose genome were sequenced exhibited its truncation. Correspondingly, host cell binding of FHA-positive C. jejuni was greater than that of FHA-truncated strains, and exogenous administration of rFHA protein reduced cell adhesion of FHA-positive bacteria. Biochemical assays showed that this putative protein exhibited a dose-dependent binding affinity to heparan sulfate, indicating its adhesin activity. Moreover, ST-4526 showed increased antibiotic-resistance (nalidixic acid and fluoroquinolones) and a reduced ability for DNA uptake. Taken together, our data suggested that these combined features contributed to the clonal thriving of ST-4526 in Japan.  相似文献   

20.
Campylobacter jejuni is the leading cause of human bacterial gastroenteritis worldwide, but source attribution of the organism is difficult. Previously, DNA microarrays were used to investigate isolate source, which suggested a non‐livestock source of infection. In this study we analysed the genome content of 162 clinical, livestock and water and wildlife (WW) associated isolates combined with the previous study. Isolates were grouped by genotypes into nine clusters (C1 to C9). Multilocus sequence typing (MLST) data demonstrated that livestock associated clonal complexes dominated clusters C1–C6. The majority of WW isolates were present in the C9 cluster. Analysis of previously reported genomic variable regions demonstrated that these regions were linked to specific clusters. Two novel variable regions were identified. A six gene multiplex PCR (mPCR) assay, designed to effectively differentiated strains into clusters, was validated with 30 isolates. A further five WW isolates were tested by mPCR and were assigned to the C7‐C9 group of clusters. The predictive mPCR test could be used to indicate if a clinical case has come from domesticated or WW sources. Our findings provide further evidence that WW C. jejuni subtypes show niche adaptation and may be important in causing human infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号