首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichoderma species are usually considered soil organisms that colonize plant roots, sometimes forming a symbiotic relationship. Recent studies demonstrate that Trichoderma species are also capable of colonizing the above ground tissues of Theobroma cacao (cacao) in what has been characterized as an endophytic relationship. Trichoderma species can be re-isolated from surface sterilized cacao stem tissue, including the bark and xylem, the apical meristem, and to a lesser degree from leaves. SEM analysis of cacao stems colonized by strains of four Trichoderma species (Trichoderma ovalisporum-DIS 70a, Trichoderma hamatum-DIS 219b, Trichoderma koningiopsis-DIS 172ai, or Trichoderma harzianum-DIS 219f) showed a preference for surface colonization of glandular trichomes versus non-glandular trichomes. The Trichoderma strains colonized the glandular trichome tips and formed swellings resembling appresoria. Hyphae were observed emerging from the glandular trichomes on surface sterilized stems from cacao seedlings that had been inoculated with each of the four Trichoderma strains. Fungal hyphae were observed under the microscope emerging from the trichomes as soon as 6 h after their isolation from surface sterilized cacao seedling stems. Hyphae were also observed, in some cases, emerging from stalk cells opposite the trichome head. Repeated single trichome/hyphae isolations verified that the emerging hyphae were the Trichoderma strains with which the cacao seedlings had been inoculated. Strains of four Trichoderma species were able to enter glandular trichomes during the colonization of cacao stems where they survived surface sterilization and could be re-isolated. The penetration of cacao trichomes may provide the entry point for Trichoderma species into the cacao stem allowing systemic colonization of this tissue.  相似文献   

2.
Trichoderma theobromicola and T. paucisporum spp. nov. are described. Trichoderma theobromicola was isolated as an endophyte from the trunk of a healthy cacao tree (Theobroma cacao, Malvaceae) in Amazonian Peru; it sporulates profusely on common mycological media. Trichoderma paucisporum is represented by two cultures that were obtained in Ecuador from cacao pods partially infected with frosty pod rot, Moniliophthora roreri; it sporulates sporadically and most cultures remain sterile on common media and autoclaved rice. It sporulates more reliably on synthetic low-nutrient agar (SNA) but produces few conidia. Trichoderma theobromicola was reintroduced into cacao seedlings through shoot inoculation and was recovered from stems but not from leaves, indicating that it is an endophytic species. Both produced a volatile/diffusable antibiotic that inhibited development of M. roreri in vitro and on-pod trials. Neither species demonstrated significant direct in vitro mycoparasitic activity against M. roreri.  相似文献   

3.
Sixty-nine endospore-forming bacterial endophytes consisting of 15 different species from five genera were isolated from leaves, pods, branches, and flower cushions of Theobroma cacao as potential biological control agents. Sixteen isolates had in vitro chitinase production. In antagonism studies against cacao pathogens, 42% inhibited Moniliophthora roreri, 33% inhibited Moniliophthora perniciosa, and 49% inhibited Phytophthora capsici. Twenty-five percent of isolates inhibited the growth of both Moniliophthora spp., while 22% of isolates inhibited the growth of all three pathogens. Isolates that were chitinolytic and tested negative on Bacillus cereus agar were tested with in planta studies. All 14 isolates colonized the phyllosphere and internal leaf tissue when introduced with Silwet L-77, regardless of the tissue of origin of the isolate. Eight isolates significantly inhibited P. capsici lesion formation (p = 0.05) in detached leaf assays when compared to untreated control leaves. ARISA with bacilli specific primers amplified 21 OTUs in field grown cacao leaves, while eubacteria specific primers amplified 58 OTUs. ARISA analysis of treated leaves demonstrated that inundative application of a single bacterial species did not cause a long-term shift of native bacterial communities. This research illustrates the presence of endospore-forming bacterial endophytes in cacao trees, their potential as antagonists of cacao pathogens, and that cacao harbors a range of bacterial endophytes.  相似文献   

4.
The identity of a patented endophytic bacterium was established by 16S rRNA sequence analysis as a strain of Bacillus mojavensis, a recently erected species within one of the B. subtilis subgroups. This strain of B. mojavensis is antagonistic to the fungus Fusarium moniliforme, an endophytic mycotoxin-producing pathogen of maize and other plants. There are five other species within this subgroup: Bacillus amyloliquefaciens, B. atrophaeus, B. licheniformis, Brevibacterium halotolerans, Paenibacillus lentimorbus, and P. popilliae. The objectives of this research were to screen other isolates of B. mojavensis, B. subtilis, and the other closely related Bacillus species for endophytic colonizing capacity and to determine the in vitro antagonism to F. moniliforme in an effort to survey the distribution of these traits, which are desirable biological control qualities within the Bacillaceae. Antagonism was determined on nutrient agar, and endophytic colonization was established with maize plants following recovery of rifampin-resistant mutants generated from all strains used in the study. The study established that all 13 strains of B. mojavensis, isolated from major deserts of the world, endophytically colonized maize and were antagonists to F. moniliforme. The endophytic colonization of maize by B. subtilis and other species within this subgroup of the Bacillaceae varied, as did antagonism, to F. moniliforme. Thus, this study suggests that endophytic colonization is another characteristic of the species B. mojavensis. The endophytic habit and demonstrated antagonism to the test fungus indicate that isolates of this species might prove to be important biological control organisms where the endophytic habit is desired.  相似文献   

5.
Fungal endophytes were isolated from healthy stems and pods of Theobroma gileri, an alternative host of the frosty pod rot pathogen of cacao. Non-sporulating isolates were grouped into 46 different morphological species according to their colony morphology. Many of these morphospecies were assumed to be basidiomycetes and, therefore, were of particular interest. Basidiomycetous endophytes have received far less attention than ascomycetes and also have potential as biological control agents of the basidiomycetous pathogens of T. cacao: Moniliophthora roreri (frosty pod rot pathogen) and M. perniciosa (witches' broom disease). The morphospecies were further characterised by molecular analyses. Amplification of the nuLSU was undertaken for phylogenetic placement of these non-sporulating cultures and revealed a total of 31 different taxa of which 15 were basidiomycetes belonging to the class Agaricomycetes, and 16 ascomycetes primarily belonging to the Sordariomycetes.  相似文献   

6.
对我国古老特有植物青檀叶片进行内生和附生真菌的研究,以了解青檀叶片内生和附生真菌的组成特点和探讨内生和附生真菌菌群之间的可能联系,为研究真菌资源多样性、植物附生和内生真菌的相互演化关系及真菌与宿主植物协同进化等提供有益参考资料。研究结果表明,从健康的青檀叶片获得可培养内生真菌839株,附生真菌1857株,共计2696株,鉴定其分属于4目,5科,43属。在目的分类水平上,内生和附生真菌均以丛梗孢目Moniliales为优势菌群,分别占90.23%和92.51%;在科的水平上,内生真菌以暗梗孢科Dematiaceae和丛梗孢科Moniliaceae为优势菌群,分别占47.56%和42.67%,附生真菌以丛梗孢科Moniliaceae和暗梗孢科Dematiaceae为优势菌群,分别占67.04%和25.47%;在属的水平上,内生真菌以黑团孢属Periconia和青霉属Penicillium为优势菌群,分别占31.47%和10.73%,附生真菌以小球霉属Glomerularia、膝葡孢属Gonatobotrys和青霉属Penicillium为优势菌群,分别占20.03%、13.95%和12.22%。青檀叶片内生真菌和附生真菌均存在的菌群数量达到23个属,占53.49%。内生真菌特有的属有6个,共分离19株,占0.70%,附生真菌特有的属有14个,共分离120株,占4.45%。内生真菌的Shannon-Wiener index(H')多样性指数(2.44)和Margalef index(R)丰富度指数(2.88)分别小于附生真菌ShannonWiener index(H')多样性指数(2.57)和Margalef index(R)丰富度指数(3.32),但两者的Evenness index(E)均匀度指数几乎相等。青檀叶片内生和附生真菌菌群组成具有较高的相似性,相似性系数达0.70。通过Fisher's exact test分析表明青檀叶片内生和附生真菌菌群组成无明显差异(P=0.072)。  相似文献   

7.
Trichoderma species are commonly used as biological control agents against phytopathogenic fungi and some strains are able to produce metabolites that enhance plant growth. In the current study we evaluated the production of potential growth-promoting metabolites, rhizosphere competence and endophytism for 101 isolates of Trichoderma from Colombia, and assessed the relationship of these factors to the enhancement of early stages of growth on bean seedlings. Twenty percent of these Trichoderma strains were able to produce soluble forms of phosphate from phosphoric rock. Only 8% of the assessed strains showed consistent ability to produce siderophores to convert ferric iron to soluble forms by chelation. Sixty percent of isolates produced indole-3-acetic acid (IAA) or auxin analogues. The production of any of these metabolites was a characteristic of specific strains, as the ability to produce these metabolites varied greatly within species. Moreover, the production of these substances did not correlate with enhanced growth on bean seedlings, measured as the combined increase in length of roots and aerial parts in the V3 stage of growth. Seven Trichoderma isolates significantly improved the growth of bean seedlings. However, metabolite production varied widely in these seven strains, and some isolates did not produce any of the assessed growth-promoting metabolites. Results indicated that growth was enhanced in the presence of rhizosphere competent and endophytic strains of Trichoderma, and these characteristics were strain-specific and not characteristic for species.  相似文献   

8.
Ortiz  Adriana  Orduz  Sergio 《Mycopathologia》2001,150(2):53-60
The antagonistic activity of Trichoderma and Gliocladium isolates against Attamyces sp., a symbiotic fungus of the leaf-cutting ant Atta cephalotes, was investigated. A. cephalotes cultures this fungus as the primary food source. Most of the Trichodema and Gliocladium isolates tested in vitro (82.6%) inhibited the Attamyces sp. mycelial growth, which was probably due to their colonization ability and competition for nutrients, both of them known mechanisms of some species of these genera. T. lignorum strain T-26 was the strongest inhibitor achieving a colonization of 23%. Microscopical observations indicate that the inhibitory effect was caused by an interaction that took place in close contact with the host hypha, causing wall deformation that led to the collapse of the turgor pressure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Endophytic fungi were isolated from healthy, living, and symptomless tissues of inner bark, leaf, and roots of Aegle marmelos, a well-known medicinal plant, growing in different parts of India including Varanasi. A total of 79 isolates of endophytic fungi were isolated, representing 21 genera, adopting a standard isolation protocol. Members of the deuteromycotina were more prevalent than ascomycotina and others. The result was quite encouraging in terms of maximum isolates recovery from hyphomycetes (78.5%) followed by ascomycetes (8.9%) and coelomycetes (7.6%) respectively, which corroborates previous studies in same area. However, 5.1% isolates remained unidentified and were classified under Mycelia Sterilia. No isolate was obtained from either basidiomycotina or from zygomycotina. Fusarium spp. had maximum colonization frequency (8.00%) in this plant. The other dominant endophytic genera were Aspergillus spp., Alternaria sp., Drechslera sp., Rhizoctonia sp., Curvularia sp., Nigrospora sp., and Stenella sp. Only two ascomycetous members Chaetomium globosum and Emericella sp. (perfect state of Aspergillus sp.) were obtained from the bark sample. These results indicated that distribution of endophytic fungi within the A. marmelos is not even. Bark harbors more endophytic fungi than leaf and root.  相似文献   

10.
【背景】多年生林下参在自然环境下生长多年,其体内存在的内生菌具有更强的适应性和定殖性,可以提高植物自身抗性,抑制病原菌的生长,更好地发挥与植物的互作。【目的】筛选定殖能力强、繁殖能力快且对病原菌具有拮抗作用的优势菌株。【方法】采用常规组织分离方法,从健康林下参根部组织中分离内生菌,通过对峙试验筛选出对人参病原菌有拮抗作用的内生细菌并对其以传统的鉴定方法进行鉴定。【结果】在得到的6株内生细菌中,菌株LXS-N2对人参立枯病病原菌、人参猝倒病病原菌均有明显抑菌性,而且具有定殖性好、繁殖快的特点,通过破坏病原真菌细胞壁和细胞膜以及改变菌丝形态从而抑制病原真菌生长。【结论】经形态学观察、生理生化反应及16S rRNA基因序列分析鉴定内生菌LXS-N2为贝莱斯芽孢杆菌,具有良好的应用开发潜力。  相似文献   

11.
The species Fusarium verticillioides (= F. moniliforme) is often found in maize seeds, constituting an important source of inoculum in the field. Fusarium spp., associated with symptomatic and asymptomatic plants, may be a primary causal agent of disease, a secondary invader or an endophyte. In the present work, endophytic fungi were isolated from two populations of Zea mays (BR-105 and BR-106) and their respective inbred lines. Within different inbred lines of maize, Fusarium was found at a frequency of 0 to 100% relative to the number of total isolated fungi. The frequency with which the genus occurred was practically the same in the two field sites (around 60%). Twenty-one F. verticillioides strains were analysed using the random amplified polymorphic DNA (RAPD) technique, employing 10 random primers. Variability analysis of endophytic isolates via RAPD showed genome polymorphism taxa of species around 60%. Endophytic isolates were clustered by their sites of origin. RAPD analysis clustered the endophytic isolates by their maize inbred lines hosts (Mil-01 to Mil-06), whereas at site A they clustered into two major groups related to the maize gene pool (BR-105 or BR-106 population). All strains isolated from seeds collected in Site A, except strains L9 and L10, were sub-grouped according to maize inbred lines. The analysis showed a discrete sub-grouping at site B. Results obtained here could be explained by a co-evolution process involving endophytic isolates of F. verticillioides and maize inbred lines.  相似文献   

12.
为探索内生真菌与广藿香互作间对宿主活性成分形成机制的影响,该研究以成分差异较大的牌香和湛香为对象,采用传统形态学方法对所获菌株归类,通过真菌通用引物ITS1/ITS4扩增菌株rDNA-ITS序列,鉴定其分类地位并研究其多样性。结果表明:(1)用PDA和LBA培养基对苗期、分枝期和成株期广藿香茎叶组织块进行内生真菌分离,共获得3 070株菌株,其中牌香(PX)分离出1 624株,鉴定出1 319株,分属于36属;湛香(ZX)分离出1 446株,鉴定出994株,分属于33属。牌香分离出7种特有内生真菌,分别为香柱菌(Epichloe typhina)、盘长孢状刺盘孢菌(Colletotrichum gloeosporioides)、座腔孢菌(Botryosphaeria sp.)、丝核菌(Rhizoctonia sp.)及截盘多毛孢菌(Truncatella sp.),并首次分离到疫霉菌(Phytophthora sp.)和指疫霉菌(Sclerophthora sp.),这2种菌属于卵菌门内生菌。湛香分离出拟青霉菌(Paecilomyces sp.)和尾孢菌(Cercospora sp.)...  相似文献   

13.
Three endophytic yeast, one isolated from stems of wild cottonwood (Populus trichocarpa), two from stems of hybrid poplar (P. trichocarpa × Populus deltoides), were characterized by analyzing three ribosomal genes, the small subunit (18S), internal transcribed spacer (ITS), and D1/D2 region of the large subunit (26S). Phenotypic characteristics of the yeast isolates were also obtained using a commercial yeast identification kit and used for assisting the species identification. The isolate from wild cottonwood was identified to be closest to species Rhodotorula graminis. The two isolates from hybrid poplar were identified to be species Rhodotorula mucilaginosa. In addition, the three yeast isolates were observed to be able to produce indole-3-acetic acid (IAA), a phytohormone which can promote plant growth, when incubated with l-tryptophan. To our knowledge, the yeast strains presented in this study were the first endophytic yeast strains isolated from species of Populus.  相似文献   

14.
The soil fungus Polymyxa betae, Keskin, besides being a root parasite, plays a role of a vector in dissemination of Beet necrotic yellow vein virus (BNYVV) causing rhizomania in sugar beet. An alternative to its chemical control is the application of antagonistic microorganisms suppressing proliferation of the fungal vector. In the present work, 66 Trichoderma isolates have been obtained from sugar beet plantations from diverse locations in Slovakia. The ability of the selected isolates to grow at low temperature (10 °C) and to suppress the colonization of roots with P. betae and the multiplication of BNYVV in roots under glasshouse conditions were tested. The roots of sugar beet seedlings growing in the BNYVV-infested soil were analyzed by serological ELISA test using monoclonal and polyclonal antibodies for the presence of BNYVV and checked microscopically for the occurrence of cystosori of P. betae. The efficacy of the selected strains to suppress the proliferation of BNYVV varied on the average between 21 and 68%. On the basis of these tests, candidate strains for practical application in biocontrol of sugar beet rhizomania were selected.  相似文献   

15.
Bacteria with the ability to grow on nitrogen-free media and with nitrogenase activity under aerobic or microaerobic conditions were isolated from sugarcane roots collected from four different agricultural locations in Granada (Spain). Isolates were Gram negative rods and were identified as Azotobacter chroococcum and Azospirillum brasilense. Our results suggest that Azotobacter isolates do not have a particular affinity for sugarcane rhizospheres and that, on the contrary, Azospirillum isolates show specific association and perhaps endophytic colonization of sugarcane. However, obligate endophytes (Gluconacetobacter diazotrophicus) were not found in the apoplastic fluid of the stems and macerates extracts of sugarcane tissues with the procedure applied. Population of this microorganism might be in low number in the Spanish sugarcane varieties studied which is also discussed.  相似文献   

16.
Biofumigation by Brassicaceae green manure or seed meal incorporation into soil is an ecological alternative to chemical fumigation against soil-borne pathogens, based on the release of glucosinolate-derived compounds. This study aimed at investigating the tolerance of the beneficial fungus Trichoderma to these compounds in view to combined utilization with Brassica carinata seed meal (BCSM). Forty isolates of Trichoderma spp. were tested in vitro for tolerance to toxic volatiles released by BCSM and in direct contact with the meal. They were found to be generally less sensitive than the assayed pathogens (Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum), even if a fungistatic effect was observed at the highest dose (10 μmole of sinigrin). Most of them also were able to grow on BCSM and over the pathogens tested. A preliminary experiment of integrating BCSM with Trichoderma in soil was carried out under controlled conditions with the patho-system P. ultimum—sugar beet. BCSM incorporation increased pathogen population, but reduced disease incidence, probably due to indirect mechanisms. The greatest effect was achieved when BCSM was applied in combination with Trichoderma, regardless of meal ability to release isothiocyanate. These findings suggest that disease control can be improved by this integrated approach. This study also highlighted that a reduction of allyl-isothiocyanate concentration in soil could occur due to the activity of some Trichoderma isolates. This effect could protect resident or introduced Trichoderma isolates from depressing effects due to the biocidal compounds, but, on the other hand, could reduce the efficacy of biofumigation against target pathogens.  相似文献   

17.
Effects of ectomycorrhizal fungi and endophytic Mycelium radicis atrovirens Melin (MRA) on growth of Betula platyphylla var. japonica seedlings were investigated under aseptic culture conditions. Three isolates of ectomycorrhizal fungi and two isolates of MRA were used. One MRA isolate was Phialocephala fortinii. Previous field work revealed that these isolates were dominant on the roots of B. platyphylla var. japonica seedlings grown in a mineral subsoil that had been exposed by the removal of surface soil. After a 100-day incubation, the growth of the seedlings was significantly enhanced by the colonization of these ectomycorrhizal fungal isolates as compared with uninoculated seedlings. In contrast, the growth of seedlings was retarded by the colonization of the MRA isolates. The growth of seedlings that were co-inoculated with ectomycorrhizal fungi and MRA was similar to that of uninoculated seedlings in most cases. These results suggest that ectomycorrhizal fungi have a beneficial effect on the growth of B. platyphylla var. japonica seedlings and that they suppress the deleterious effect of MRA. Thus, these ectomycorrhizal fungi probably have an important role in establishing B. platyphylla var. japonica seedlings during the initial stage of re-vegetation following site disturbance by the removal of surface soil.  相似文献   

18.
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is considered as a lethal disease of bananas worldwide. To manage the disease effectively, 20 rhizospheric and 43 endophytic Trichoderma isolates obtained from 12 different Foc resistant banana accessions were evaluated against Foc in vitro and in vivo. In vitro screening among Trichoderma isolates for their multiple functions (mycelial and spore germination inhibition, hydrogen cyanide, chitinolytic enzymes, non-volatile and volatile metabolites production) in suppressing Foc and promoting plant growth (IAA production and phosphate solubilisation) indicated that the multiple biocontrol actions were significantly higher in 6 isolates of rhizospheric Trichoderma and 10 isolates of endophytic Trichoderma compared to other isolates. The greenhouse evaluation of individual application of these rhizospheric and endophytic Trichoderma isolates against Fusarium wilt pathogen in cv. Grand Naine (AAA) indicated significant suppression of Fusarium wilt disease and increased plant growth characters as compared to Foc pathogen inoculated plants. However, none of these individual Trichoderma isolates recorded complete suppression of Fusarium wilt disease. Therefore, the greenhouse evaluation involving combination of rhizospheric Trichoderma sp. NRCB3 + endophytic Trichoderma asperellum Prr2 recorded 100% reduction of Fusarium wilt disease and increased plant growth parameters up to 250% when compared to individual isolates application and Foc alone-inoculated plants. Further, the field evaluation of this combination of Trichoderma isolates applied for three times: (1) at 15 days before planting, (2) second month after planting and (3) fourth month after planting resulting in significant reduction of Fusarium wilt disease and also increase in bunch weight as compared to untreated control plants. Therefore, these Trichoderma isolates may be used in combination for the effective suppression of Fusarium wilt disease in banana.  相似文献   

19.
About 63 fungal endophytic isolates were separated from rhizomes of Paris polyphylla var. yunnanensis, which is a traditional medicinal plant mainly distributed in China. The isolates were characterized and grouped based on the culture characteristics and the morphology of colony growth and conidia. Eleven representative ones were selected for further taxonomical identification. Five genera namely Fusarium, Gliocladiopsis, Gliomastix, Aspergillus and Cylindrocarpon were identified on the basis of their morphological characterizations. Of them, the most frequent genus was Fusarium (i.e. Ppf1, Ppf3 and Ppf14). Their ITS-rDNA sequences were compared with those available in the GeneBank databases to obtain the closest related species by BLAST analysis as well as to analyze their phylogenetic affiliation. The isolates were identified as Gliocladiopsis irregularis (Ppf2), Plectosphaerella cucumerina (Ppf4), Padospora sp. (Ppf6), Gliomastix murorum var. murorum (Ppf7), Aspergillus fumigatus (Ppf9), Pichia guilliermondii (Ppf10), Neonectria radicicola (anamorph: Cylindrocarpon) (Ppf12) and one uncultured mycorrhizal ascomycete (Ppf13) separately based on their morphological and molecular features. The molecular characters of the endophytic fungi were basically coincident with their morphology. The broad diversity and taxonomic spectrum were exhibited by the endophytic fungi from P. polyphylla var. yunnanensis.  相似文献   

20.
Seventy-nine Trichoderma strains were isolated from soil taken from 28 commercial plantations of Agave tequilana cv. ‘Azul’ in the State of Jalisco, Mexico. Nine of these isolates produced nonvolatile metabolites that completely inhibited the growth of Thielaviopsis paradoxa on potato dextrose agar plates. These isolates were identified as Trichoderma longibrachiatum on the basis of their morphology and DNA sequence analysis of two genes (ITS rDNA and translation elongation factor EF-1α). Mycoparasitism of Th. paradoxa by T. longibrachiatum strains in dual cultures was examined by scanning electron microscopy. The Trichoderma hyphae grew alongside the Th. paradoxa hyphae, but penetration of Thielaviopsis hyphae by Trichoderma was no apparent. Aleurioconidia of Th. paradoxa were parasitized by Trichoderma. Both hyphae and aleurioconidia of Th. paradoxa lost turgor pressure, wrinkled, collapsed and finally disintegrated. In liquid cultures, all nine Trichoderma isolates produced proteases, β-1,3-glucanases and chitinases that would be responsible for the degradation of Thielaviopsis hyphae. These results demonstrate that the modes of action of T. longibrachiatum involved against Th. paradoxa in vitro experiments are mycoparasitism and the production of nonvolatile toxic metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号