首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The sequence similarity and functional equivalence of telomeres from macronuclear linear DNA molecules in Oxytricha and telomeric sequences of true mitotic/meiotic chromosomes suggest that the (C4A4)n/(G4T4)n sequences found at macronuclear telomeres may also function as micronuclear telomeres in Oxytricha. In this study, radioactively labeled (C4A4)n have been hybridized to micronuclear DNA samples that have been treated with the enzyme Bal31, which has double-stranded exonuclease activity. A time course of digestion shows that approximately 50% of the micronuclear sequences that hybridize to a C4A4 probe disappear with mild digestion by Bal31, suggesting that these sequences are telomeric. The remainder of the hybridizing sequences are not degraded any more rapidly than the total genomic DNA. All of the C4A4/G4T4 sequences that can be detected by hybridization of C4A4 probes to Southern-blotted restriction enzyme digests of micronuclear DNA occur in regions of the genome that are highly resistant to restriction enzyme digestion and show a clustering of sites reminiscent of telomeres in other organisms. We propose that the micronuclear C4A4 hybridizable sequences that are Bal31 resistant may be located near the telomere and within telomere-associated repetitive sequences that are immediately internal to telomeric (Bal31 sensitive) C4A4 hybridizeable sequences.  相似文献   

2.
Following the sexual phase of its life cycle, the hypotrichous ciliate Oxytricha nova transforms a copy of its chromosomal micronucleus into a macronucleus containing short, linear DNA molecules with an average size of 2.2 kilobase pairs. In addition, more than 90% of the DNA sequences in the micronuclear genome are eliminated during this process. We have examined the organization of macronuclear DNA molecules in the micronuclear chromosomes. Macronuclear DNA molecules were found to be clustered and separated by less than 550 base pairs in two cloned segments of micronuclear DNA. Recombinant clones of two macronuclear DNA molecules that are adjacent in the micronucleus were also isolated and examined by DNA sequencing. The two macronuclear DNA molecules were found to be separated by only 90 base pairs in the micronuclear genome.  相似文献   

3.
J P Wen  C Eder    H J Lipps 《Nucleic acids research》1995,23(10):1704-1709
We describe the construction of a vector carrying the micronuclear versions of two macronuclear DNA molecules, one of which was modified by the insertion of a polylinker sequence. This vector was injected into the polytene chromosomes of the developing macronucleus of Stylonychia and its processing during further macronuclear development and its fate in the mature macronucleus were analyzed. In up to 30% of injected cells the modified macronuclear DNA sequence could be detected. While the internal eliminated sequences (IES) present in the macronuclear precursor DNA sequence are still retained in the mature macronucleus, the modified macronuclear DNA sequence is correctly cut out from the vector, telomeres are added de novo and it is stably retained in the macronucleus during vegetative growth of the cells. This vector system represents an experimental system that allows the identification of DNA sequences involved in the processing of macronuclear DNA sequences during macronuclear development.  相似文献   

4.
Organization of the Euplotes crassus micronuclear genome   总被引:11,自引:0,他引:11  
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

5.
J Scott  C Leeck    J Forney 《Nucleic acids research》1994,22(23):5079-5084
The micronuclear DNA of Paramecium contains sequences that are precisely excised during the formation of the macronuclear (somatic) genome. In this paper we show that four eliminated sequences ranging in size from 28 to 416 base pairs, are present in or near the micronuclear copy of the B surface protein gene. Each excised sequence is bounded by the dinucleotide 5'-TdA-3'. Comparison of the micronuclear B gene with the previously determined micronuclear sequence of the A surface protein gene shows that although the positions of at least three of the eliminated sequences are conserved in both genes, the sequences are highly divergent. Transformation of vegetative macronuclei with fragments of the micronuclear B gene results in replication and maintenance of the DNA, but the micronuclear specific sequences are not removed. Previous studies have shown that the correct incorporation of the B gene into the new macronucleus requires copies of the macronuclear B gene in the old macronucleus. Using macronuclear transformation, we show that the micronuclear B gene can substitute for the macronuclear B gene with regard to its role in DNA processing. This suggests that the macronuclear DNA is not acting as a guide for the excision of the micronuclear specific sequences.  相似文献   

6.
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

7.
During its life cycle, the hypotrichous ciliated protozoan Oxytricha nova transforms a copy of its micronucleus, which contains chromosome-sized DNA, into a macronucleus containing linear, gene-sized DNA molecules. A region of the micronuclear genome has been defined that gives rise to two distinct macronuclear DNA molecules during development. Through analysis of recombinant macronuclear and micronuclear clones, the generation of the two macronuclear DNA molecules was shown to be the result of alternative use of chromosome fragmentation sites. In addition, evidence was obtained that adjacent micronuclear precursors of macronuclear DNA molecules can overlap by a few base pairs. The significance of these findings in relation to developmental chromosome fragmentation is discussed.  相似文献   

8.
9.
L A Klobutcher  C L Jahn  D M Prescott 《Cell》1984,36(4):1045-1055
During the life cycle of the hypotrichous ciliate Oxytricha nova, a macronucleus containing short, gene-sized DNA molecules is produced from a copy of the chromosomal micronuclear genome. In order to characterize the process of macronuclear development, we have isolated and determined the DNA sequence of a particular macronuclear gene and its micronuclear precursor. The results of this analysis indicate that macronuclear telomeric sequences (5'C4A4(3') repeats) are not present at the ends of the gene in its micronuclear chromosomal location and must be added during development. In addition, the micronuclear copy of the gene contains three short blocks of sequence that must be removed during development, implying the involvement of a nucleic acid-splicing process in generating mature macronuclear genes.  相似文献   

10.
After mating, hypotrichous ciliated protozoa transform a set of their micronuclear chromosomes into thousands of short, linear DNA molecules that form the macronuclear genome. To examine micronuclear genome organization in the hypotrich Euplotes crassus, we have analyzed two cloned segments of micronuclear DNA as well as the macronuclear DNA molecules that are derived from them. E. crassus was found to display a number of features characteristic of other hypotrich genomes, including (i) clustering and close spacing of the precursors of macronuclear DNA molecules, (ii) the frequent occurrence of internal eliminated sequences within macronuclear precursors, (iii) overlapping macronuclear precursors, (iv) lack of telomeric repeats at the ends of macronuclear precursors, and (v) alternative processing of the micronuclear chromosome to yield multiple macronuclear DNA molecules. In addition, a moderately repetitive, transposonlike element that interrupts the precursors of two macronuclear DNA molecules has been identified and characterized. This transposonlike element, designated Tec1, is shown to be reproducibly removed from one of the macronuclear precursors during independent episodes of macronuclear development.  相似文献   

11.
DNA deletion by site-specific chromosome breakage and rejoining occurs extensively during macronuclear development in the ciliate Tetrahymena thermophila. We have sequenced both the micronuclear (germ line) and rearranged macronuclear (somatic) forms of one region from which 1.1 kilobases of micronuclear DNA are reproducibly deleted during macronuclear development. The deletion junctions lie within a pair of 6-base-pair direct repeats. The termini of the deleted sequence are not inverted repeats. The precision of deletion at the nucleotide level was also characterized by hybridization with a synthetic oligonucleotide matching the determined macronuclear (rejoined) junction sequence. This deletion occurs in a remarkably sequence-specific manner. However, a very minor degree of variability in the macronuclear junction sequences was detected and was shown to be inherent in the mechanism of deletion itself. These results suggest that DNA deletion during macronuclear development in T. thermophila may constitute a novel type of DNA recombination and that it can create sequence heterogeneity on the order of a few base pairs at rejoining junctions.  相似文献   

12.
We explored the ability of S. cerevisiae to utilize heterologous DNA sequences as telomeres by cloning germline (micronuclear) DNA from Tetrahymena thermophila on a linear yeast plasmid that selects for telomere function. The only Tetrahymena sequences that functioned in this assay were (C4A2)n repeats. Moreover, these repeats did not have to be derived from Tetrahymena telomeres, although we show that micronuclear telomeres (like macronuclear telomeres) of Tetrahymena terminate in (C4A2)n repeats. Chromosome-internal restriction fragments carrying (C4A2)n repeats also stabilized linear plasmids and were elongated by yeast telomeric repeats. In one case, the C4A2 repeat tract was approximately 1.5 kb from the end of the genomic Tetrahymena DNA fragment that was cloned, but this 1.5 kb of DNA was missing from the linear plasmid. Thus, yeast can utilize internally located tracts of telomere-like sequences, after the distal DNA is removed. The data provide an example of broken chromo-some healing, and underscore the importance of the telomeric repeat structure for recognition of functional telomeric DNA in vivo.  相似文献   

13.
The 50 non-coding bases immediately internal to the telomeric repeats in the two 5′ ends of macronuclear DNA molecules of a group of hypotrichous ciliates are anomalous in composition, consisting of 61% purines and 39% pyrimidines, A>T (ratio of 44:32), and G>C (ratio of 17:7). These ratio imbalances violate parity rule 2, according to which A should equal T and G should equal C within a DNA strand and therefore pyrimidines should equal purines. The purine-rich and base ratio imbalances are in marked contrast to the rest of the non-coding parts of the molecules, which have the theoretically expected purine content of 50%, with A = T and G = C. The ORFs contain an average of 52% purines as a result of bias in codon usage. The 50 bases that flank the 5′ ends of macronuclear sequences in micronuclear DNA (12 cases) consist of ~50% purines. Thus, the 50 bases in the 5′ ends of macronuclear sequences in micronuclear DNA are islands of purine richness in which A>T and G>C. These islands may serve as signals for the excision of macronuclear molecules during macronuclear development. We have found no published reports of coding or non-coding native DNA with such anomalous base composition.  相似文献   

14.
Y Oka  T Honjo 《Nucleic acids research》1983,11(13):4325-4333
Comparison of nucleotide sequences of a macronuclear DNA and its micronuclear counterpart of a hypotrichous ciliate, Stylonychia pustulata, demonstrates that common terminal repeats (C4A4) of the macronuclear DNA are not present at the corresponding region in the micronuclear genome. The results indicate that the common terminal C4A4 repeat is added or translocated during or after the rearrangement of the micronuclear DNA to the macronuclear DNA.  相似文献   

15.
In order to study the derivation of the macronuclear genome from the micronuclear genome in Oxytricha nova micronuclear DNA was partially digested with EcoRI, size fractionated, and then cloned in the lambda phage Charon 8. Clones were selected a) at random b) by hybridization with macronuclear DNA or c) by hybridization with clones of macronuclear DNA. One group of these clones contains only unique sequence DNA, and all of these had sequences that were homologous to macronuclear sequences. The number of macronuclear genes with sequences homologous to these micronuclear clones indicates that macronuclear sequences are clustered in the micronuclear genome. Many micronuclear clones contain repetitive DNA sequences and hybridize to numerous EcoRI fragments of total micronuclear DNA, yielding similar but non-identical patterns. Some micronuclear clones containing these repetitive sequences also contained unique sequence DNA that hybridized to a macronuclear sequence. These clones define a major interspersed repetitive sequence family in the micronuclear genome that is eliminated during formation of the macronuclear genome.  相似文献   

16.
The 81-MAC family consists of three sizes of macronuclear chromosomes in Oxytricha fallax. Clones of these and of micronuclear homologs have been classified according to DNA sequence into three highly homologous (95.9-97.9%), but distinct versions. Version A is represented by a micronuclear clone and by clones of two different-sized macronuclear chromosomes, showing that alternate processing of micronuclear DNA is responsible for the variety of sizes of macronuclear chromosomes. Three Internal Eliminated Sequences (IES's) are demonstrated in Version A micronuclear DNA. Two have been sequenced and show short, flanking direct repeats but no inverted terminal repeats. Version C micronuclear DNA has interruptions in the macronuclear homology which correspond closely to the Version A IES's. Whether they are true IES's is unknown because no Version C macronuclear DNA has been demonstrated. Version C micronuclear DNA may be "macronuclear-homologous" but "micronucleus-limited" and not "macronucleus-destined." Version B is represented by macronuclear DNA clones, but no micronuclear clones. Vegetative micronuclear aneuploidy is suggested. The possible role of micronuclear defects in somatic karyonidal senescence is discussed in light of the precise macronuclear chromosome copy controls demonstrated within the 81-MAC family. These controls apparently operate throughout karyonidal life to maintain 1) a constant absolute amount of 81-MAC sequences in the macronucleus and 2) a constant stoichiometry within the family, both according to version and chromosome size.  相似文献   

17.
During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.  相似文献   

18.
19.
C4A2 repeats are present in multiple clusters in both the macronucleus and micronucleus of Tetrahymena. Although the macronucleus is generated from the micronucleus after sexual conjugation, the repeats are telomeric sequences in the macronucleus but are internally located in the micronucleus (1). This study investigates the fate of the sequences adjacent to the micronuclear C4A2 repeats. Southern blot analyses of 21 C4A2-containing micronuclear clones show that extensive elimination of the adjacent sequences occurs during the formation of the macronucleus. Comparison of one C4A2-containing micronuclear clone with its derived macronuclear segment indicates that approximately 4.5 kb of DNA, which includes the C4A2 repeats and adjacent sequences on both sides is deleted from the macronucleus. The two regions adjoining the deletion are joined together to form a contiguous segment in the macronucleus. This excision of C4A2 repeats and surrounding sequences and the rejoining of the retained segments is probably the mechanism by which all or most of the other C4A2 adjacent sequences are eliminated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号