首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Primary culture of rat hepatocytes in hormone-free medium using membrane-supported collagen sandwich maintained their cellular morphology and expressed albumin secretion for about 3 weeks in vitro. It was reconfirmed that mimicking the cellular environment in vivo was effective for cellular maintenance.  相似文献   

2.
Summary To develop a strategy for extended primary culture of human hepatocytes, we placed human hepatocytes between two layers of collagen gel, called a “collagen gel sandwich.” Maintenance of hepatocellular functions in this system was compared with that of identical hepatocyte preparations cultured on dry-collagen coated dishes or co-cultured with rat liver epithelial cells. Human hepatocytes in a collagen gel sandwich (five separate cultures) survived for more than 4 wk, with the longest period of culture being 78 d. They maintained polygonal morphology with bile canaliculuslike structures and high levels of albumin secretion throughout the period of culture. In contrast, hepatocytes on dry-collagen became feature-less, and albumin secretion could not be detected after 14 d of culture. This loss of albumin secretion was partially recovered by overlaying one layer of collagen gel. Ethoxyresorufin O-deethylase activity, associated with cytochrome P450 1A2, was detected basally up to 29 d in collagen gel sandwich culture. These activities were induced four- to eightfold after induction with dibenz(a,h)anthracene. Cocultures also maintained basal activity up to 29 d. However, their inducibility was lower than that of hepatocytes in collagen gel sandwich. No ethoxyresorufin O-deethylase activity was detected in hepatocytes cultured on dry-collagen at 7 d. Thus, the collagen gel sandwich system preserves differentiated morphology and functions of human hepatocytes in primary culture for a prolonged period of time. This system is a promising model for studying human hepatocellular function, including protein synthesis and drug metabolism in vitro.  相似文献   

3.
Adult rat hepatocytes cultured in a collagen sandwich system maintained normal morphology and a physiological rate of albumin secretion for at least 42 days. Hepatocytes cultured on a single layer of collagen gel essentially ceased albumin secretion within 1 wk but could recover function with the overlay of a second layer of collagen gel. This culture configuration more closely mimics the hepatocytes' in vivo environment and provides a simple method for their long-term maintenance.  相似文献   

4.
We quantitatively evaluated two recently-developed novel techniques for hepatocyte cultivation in a dish level; that is, spheroid culture and membrane-supported collagen (CN) gel sandwich culture, in terms of cellular maintenance, albumin secretion and 7-ethoxycoumarin (7EC) metabolism to 7-hydroxycoumarin (7HC) as a marker for cytochrome P450 IA1 activity in the presence and absence of rat liver epithelial cell line (RLEC) during one month of culture, together with conventional coculture with RLEC in CN-coated dishes as a control. RLEC prevented spheroid loss caused by its detachment from the culture dishes often occurring in pure culture. CN-gel sandwich by itself improved remarkably hepatocyte maintenance when compared with CN-gel free systems, thereby resulting in enhancement of overall functional expressions as compared with CN-gel free systems. RLEC in CN-gel sandwhich, however, reduced cellular sustainment probably due to its suppression of hepatocyte growth. Although there were no significant differences in albumin secretion per cell among the five cultures examined, CN-gel sandwich expressed markedly higher 7EC metabolizing activity per cell, where RLEC presence had a preferable influence. Consequently, membrane-supported CN-gel sandwich was the most superior technique for hepatocyte cultivation from the standpont of both cellular maintenance and its functional expressions per cell.  相似文献   

5.
L-Proline supplementation of the medium for collagen gel cultures of hepatocytes has been shown to improve albumin secretion. A study was made as to whether L-proline is also essential for the maintenance of xenobiotic biotransformation capacities in collagen gel sandwich and immobilisation cultures of rat and human hepatocytes. Key phase I (cytochrome P450-dependent monooxygenase [CYP)] and microsomal epoxide hydrase [mEH]) and phase II (glutathione S-transferase [GST]) biotransformation enzyme activities and the secretion of albumin in the culture medium were assessed in the absence and presence of L-proline. CYP and mEH activities were not affected by the addition of L-proline, whereas phase II alpha-Class GST activity of rat hepatocytes in collagen cultures was decreased. Species differences were demonstrated, as human hepatocytes showed a better maintenance of GST activities than their rat counterparts in the presence of L-proline. Albumin secretion, often considered to be a marker for differentiated cell function, does not parallel the biotransformation capacities of the hepatocytes in culture. Additional results demonstrated an L-proline-mediated enhancement of the proliferation rate of contaminating stellate cells in conventional monolayer culture. Transdifferentiation of stellate cells to proliferating myofibroblasts, along with an increased albumin secretion and collagen synthesis, are characteristic of fibrotic liver. Since the last two phenomena have been observed in L-proline-supplemented collagen gel cultures, it can be concluded that when stable collagen gel cultures of rat hepatocytes are needed for long-term pharmacotoxicological studies, it is preferable to use an L-proline-free culture medium. Further studies on medium optimisation are required for hepatocytes from species other than rat.  相似文献   

6.
In an effort to reconstruct the cellular polarity normally found in the liver, adult rat hepatocytes were sandwiched between two layers of hydrated rat tail tendon collagen matrix. Functionally, sandwiched hepatocytes maintained the secretion of albumin, transferrin, fibrinogen, bile acids, and urea for at least 6 weeks, whereas cells cultured on a single layer of collagen gel ceased such secretion in 1-2 weeks. After 1 week of culture on a single layer of collagen gel, hepatocytes could still recover these lost functions when a second layer of collagen gel was applied. The exact nature of the substrate for constructing the sandwich system appeared to be unimportant as long as it allowed cellular attachment. Hepatocytes cultured in the sandwich system appeared to maintain a distribution of actin filaments similar to the in vivo state, whereas cells cultured on a single layer of collagen gel showed abnormal formation of stress fibers. These studies suggest that simple manipulations of the configuration of extracellular elements can dramatically alter the behavior of cultured hepatocytes.  相似文献   

7.
8.
Current methods of cryopreservation of hepatocytes in single cell suspensions result in low overall yields of hepatocytes, demonstrating long-term preservation of hepatocellular functions. A novel culture method has recently been developed to culture liver cells in a sandwich configuration of collagen layers in order to stabilize the phenotypic expression of these cells in vitro (J. C. Y. Dunn, M. L. Yarmush, H. G. Koebe, and R. G. Tompkins, FASEB J. 3, 174, 1989). Using this culture system, rat hepatocytes were frozen with 15% (v/v) Me2SO to -70 degrees C, and stored at approximately -100 degrees C. Following rapid thawing, long-term function was assessed by measuring albumin secretion in culture for 7-14 days postfreezing. Comparison was made with cryopreservation of liver cells in single cell suspensions. Cryopreservation of liver cells in suspension resulted in only a 2% yield of cells which could be successfully cultured; albumin secretion rates in these cultured cells over 48 hr were 26-30% of secretion rates for nonfrozen hepatocytes. Freezing cultured liver cells in the sandwich configuration after 3, 7, and 11 days in culture maintained 0, 26, and 19% of the secretion rates of nonfrozen hepatocytes, respectively. Morphology of the cryopreserved cells appeared grossly similar to cells without freezing; however, this morphological result was patchy and represented approximately 30% of the cells in culture. These results represent the first demonstration of any quantitative long-term preservation of hepatocellular function by cryopreservation, suggesting that cultured hepatocytes can survive freezing and maintain function.  相似文献   

9.
A serum-free culture system for primary hepatocytes which maintains stabel high-level hepatocyte function for prolonged periods in culture has been developed. Isolated rat primary hepatocytes were cultured in serum-free media between two layer of gelled collagen in a sandwich configuration which reinstates the cellular polarity necessary for long-term function in vitro. Thsee serum-free hepatocyte cultures maintained near physiological rates of albumin and transferrin secretion for a minimum of 26 days in culture. L-Proline was shown to be critical for both the approach to steady state and maximal level of protein secretion. Analysis of does-response data gave K(m) values of 2.9 and 1.7 mug/mL for albumin and transferrin secretion, respectively.  相似文献   

10.
Abstract. Extracellular matrices, like collagen layers, play an important role in preventing dedifferentiation of hepatocytes in long-term culture experiments. It has also been shown that polyamines are crucial for cell growth and liver differentiation – regeneration. Primary cultured hepatocytes with their low mitotic activity might be a valuable tool in studying the role of polyamines in differentiation. Here, our goal was to investigate whether an extracellular cell culture matrix can influence intracellular polyamine levels in human hepatocytes during long-term culture. Primary human hepatocytes were isolated from surgical tissue resections and were maintained either in single collagen (SG) or double collagen gel (DG) layer (sandwich) culture systems. Cell viability and function were examined and intracellular polyamine levels were measured using a highly sensitive high performance liquid chromatography (HPLC) method. Hepatocytes showed high viability in both culture systems used, but albumin secretion was diminished in SG cultured hepatocytes after 14 days. In general, total intracellular polyamine levels of hepatocytes decreased markedly in both SG and DG within the first days of culture, but remained constant until day 21 with a SG/DG ratio of about 1.4. Individual polyamines levels were dependent on the culture time and system, where spermine decreased and putrescine increased in both SG and DG over time (day 14), but spermidine increased only in DG. Our results suggest that polyamine levels, in particular putrescine, might be important regulators of hepatocyte specific function in vitro and therefore serve as a marker of differentiation for cultivated human hepatocytes.  相似文献   

11.
For long-term maintenance of functional hepatocytes in primary culture, a new culture system with chemically modified type-I collagen gel was developed. Isolated hepatocytes spread as flat cells and rapidly lost their viability and functions when cultured on native collagen gel. In contrast, they survived for several weeks when cultured on collagen gels that had been modified by treatment with sodium-borohydride (NaBH4) or by digestion with pepsin, which resulted in destruction of crosslinking of collagen fibers and marked decrease in meachanical strength of the gels. These long-lived cells were round and aggregated and maintained high levels of various differentiated liver functions including albumin secretion and activities of tyrosine aminotransferase and P450. Moreover on collagen gels modified by treatment with NaBH4 or pepsin, the cell showed less DNA synthesis in response to mitogenic stimulation than cells cultures on gel containing native collagen. Interestingly, crosslinking of these chemically modified gels with D-ribose resulted in changes in various phenotypes of hepatocytes cultures on them including shape, longevity, and functions expressed when the cells were cultured on native collagen gel, suggesting that the effect of modification of the collagen gel is reversible. Thus the structure of collagen gels, probably due to the degree of crosslinking, seems to affect the morphology, maintenance of differentiated functions, and growth of primary cultured hepatocytes.  相似文献   

12.
Freshly harvested primary rat hepatocytes, which had been entrapped in a synthetic extracellular matrix, were examined for differentiated morphology and enhanced liver-specific functions for long-term culture. A copolymer of N-isopropylacrylamide (98 mol % in the feed) and acrylic acid [poly(NiPAAm-co-AAc)], and the adhesion molecule, Arg-Gly-Asp (RGD), incorporated into a hydrogel, were used to entrap hepatocytes. Over 28 days' culture, the hepatocytes in the RGD-incorporated gel maintained higher viability and produced albumin and urea at constant rates, while there was lower cell viability and less albumin secretion by hepatocytes in poly(NiPAAm-co-AAc). Hepatocytes cultured in the gel with RGD incorporated into it constitutes a potentially useful three-dimensional cell system for application in a bio-artificial liver device.  相似文献   

13.
A recently developed sandwich culture system, in which hepatocytes are sandwiched between two layers of collagen, has been shown to be capable of maintaining long-term expression of hepatocellular function (J. C. Y. Dunn et al., Biotechnol. Prog. 7, 237-245, 1991). The development of an adequate technique for the cryopreservation of hepatocytes in such a stable culture configuration would ensure a ready supply of hepatocytes for use in bioreactors or bioartificial liver support devices. This report describes the effects of exposing hepatocytes in sandwich culture to different concentrations of the cryoprotectant dimethyl sulfoxide (Me2SO) at 22 degrees C on Day 7 of culture. Cell function, morphology, and cytoskeletal organization were followed for 14 days after exposure. Hepatocellular morphology and albumin secretion remained normal when cultures were exposed for up to 120 min to predicted final Me2SO concentrations up to 1.33 M. Exposure for less than 60 min to equilibrium concentrations of up to 3.33 M Me2SO did not adversely affect cell morphology or albumin secretion rate, but at the highest concentration (3.33 M), increase of the exposure time to 60 or 120 min resulted in dramatic, irreversible cell damage and loss of function. Actin filament organization was shown to be undisturbed when the cells were exposed to 1.33 M Me2SO for 60 min, but was irreversibly disrupted by exposure to 3.33 M for 120 min. Based on these results, a simple and safe procedure is suggested for the addition of Me2SO to hepatocytes in a sandwich culture configuration and its subsequent removal, which will be valuable for studies on hepatocyte cryopreservation.  相似文献   

14.
The objective of this study was to examine the importance of cellular aggregation for the maintenance of liver-specific functions in hepatocytes. We used two culture matrix systems (collagen sandwich and Matrigel) to examine the responsiveness of albumin secretory function in cultured rat hepatocytes under various seeding conditions. With high cell seeding, both culture systems elicited comparable levels of elevated function. Under conditions of sparse seeding, however, their responses were quite distinct: collagen sandwiched cells exhibited a significant deterioration in secretion, while Matrigel-cultured cells retained their basal levels of function. This indicates that a critical degree of cell-cell interactions is essential for promoting function in the collagen sandwich, and in the Matrigel-cultured cells functions may be preserved by constitutive matrix-related phenomena, even in the absence of aggregation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 706-711, 1997.  相似文献   

15.
Albumin secretion, expression of cytochrome P450 dependent mono-oxygenases (CYPs) and their inducibility by well-known inducers were evaluated during 1 week in collagen type I gel sandwich and immobilisation cultures of adult primary rat hepatocytes. Albumin secretion increased during culture time and, following an initial decrease, CYP biotransformation activities remained stable for at least 7 days. Better preservation results were observed in the collagen gel sandwich culture than in the immobilisation model. The inducibility of CYPs by beta-naphthoflavone (beta-NF), 3- methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (DEX) was studied in both collagen gel hepatocyte cultures. Exposure of the cells to either 5microM 3-MC or 25 microM beta-NF, added to the culture medium, resulted in strong increases of CYP1A1/2 activity in both culture models. Treatment with PB (3.2 mM) resulted in an increase in the CYP2B activity and a higher hydroxylation of testosterone in the 16alpha-position (CYP2B1/2 and CYP2C11), the 7alpha-position (CYP2A1/2), and the 6beta-position (CYP3A1). DEX (10 microM) markedly increased testosterone 6beta- and 7alpha-hydroxylation. Expression and induction experiments of CYP proteins exposed to these molecules confirmed the results of the CYP activity measurements. The patterns of CYP induction in collagen gel cultures of rat hepatocytes were similar to those observed in vivo. Consequently, collagen gel cultures and, more specifically, collagen gel sandwich cultures seem to be suitable as in vitro models for evaluating xenobiotics as potential inducers of CYP-enzymes.  相似文献   

16.
The effect of two culture configurations (single collagen gel and double collagen gel) and of two hormones (insulin and glucagon) on the differentiated status and the intracellular nucleotide pools of primary porcine hepatocytes was investigated. The objective was to analyze and monitor the current state of differentiation supported by the two culture modes using intracellular nucleotide analysis. Specific intracellular nucleotide ratios, namely the nucleoside triphosphate (NTP) and the uridine (U) ratio were shown to consistently reflect the state of dedifferentiation status of the primary cells in culture affected by the presence of the two hormones insulin and glucagon. Continuous dedifferentiation of the cells was monitored in parallel by the reduction of the secretion of albumin, and changes in UDP-activated hexoses and UDP-glucuronate. The presence of insulin maintained the differentiated status of hepatocytes for more than 12 days when cultivated under double gel conditions whereas glucagon was less effective. In contrast, cells cultivated in a single gel matrix immediately started to dedifferentiate upon seeding. NTP and U ratios were shown to be more sensitive for monitoring dedifferentiation in culture than the albumin secretion. Their use allowed the generation of an easily applicable NTP–U plot in order to give a direct graphical representation of the current differentiation status of the cultured cells. Moreover, the transition from functional and differentiated hepatocytes to dedifferentiated fibroblasts could be determined earlier by the nucleotide ratios compared to the conventional method of monitoring the albumin secretion rate.  相似文献   

17.
Long-term culture of hepatocytes from human adults   总被引:1,自引:0,他引:1  
A long-term primary human hepatocyte culture retraining liver-specific functions is important and essential for basic research and for the future development of hepatocyte-based applications. We established a normal hepatocyte culture system from excess normal tissues obtained from adult liver cancer patients who received partial liver resection. Hepatocytes were isolated after perfusion and enzymatic disaggregation, and were first maintained in hormonally defined media on a Matrigel matrix, and then transferred to collagen sandwich gel. The hepatocytes formed clusters on the Matrigel matrix and increased in size and numbers with time of culture and eventually grew into spheroids of variable sizes. After being transferred to collagen gel, the cells migrated outward from spheroids to form a monolayer with cuboidal or polygonal cell shapes with granular cytoplasm and continued to proliferate. Cellular functions specific for hepatocytes were analyzed using immunoblot assay for proteins specifically secreted by the liver cells on different days of culture. The cells secreted albumin, transferrin and -fetoprotein consistently for more than 100 days, to a maximum of 150 days. Thus, we have established a long-term culture of hepatocytes from human adults, which will be useful for basic studies of liver physiology such as metabolism and morphogenesis, as well as for other applications in the study of infectious hepatitis, pharmacology, pharmacokinetics, and toxicology.  相似文献   

18.
Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6-stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CC-RLEC), a collagen type I sandwich culture (SW) and a conventional primary hepatocyte monolayer culture (ML). Basal albumin secretion was most stable over time in SW. Fibrinogen secretion was induced by IL-6 in all cell culture models. Compared with ML, CC-RLEC showed an almost three-fold higher fibrinogen secretion under both control and IL-6-stimulated conditions. Induction of fibrinogen release by IL-6 was lowest in SW. Albumin secretion was decreased after IL-6 stimulation in both ML and CC-RLEC. Thus, cells growing under the various primary hepatocyte cell culture techniques react differently to IL-6 stimulation with regard to acute-phase protein secretion. CC-RLEC is the preferred method for studying cytokine-mediated induction of acute-phase proteins, because of the pronounced stimulation of fibrinogen secretion upon IL-6 exposure under these conditions.  相似文献   

19.
20.
Co-culture of primary rat hepatocytes with hepatic non-parenchymal cells or sinusoidal endothelial cells for albumin production activity as an index of liver-specific function was studied. The co-cultures were effective for the expression and maintenance of albumin production activity. However, the co-culture effect was not observed when we used a suitable culture medium, which had already been reported to be sufficient for albumin production activity. Albumin production of dispersed cells in collagen gel culture was higher than that of spheroid culture. In addition, albumin production of spheroids in collagen gel culture was higher than that of spheroid culture and dispersed cell collagen gel culture with a suitable culture medium. We found that culture medium composition was more important than co-culture for expression and maintenance of albumin production. Furthermore, we found that cell–cell interaction was effective for the expression of albumin production, but heterotypic cell–cell interaction was not necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号