首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence suggests that nocturnal transpiration rate (TRN) is a non‐negligible contributor to global water cycles. Short‐term variation in nocturnal vapor pressure deficit (VPDN) has been suggested to be a key environmental variable influencing TRN. However, the long‐term effects of VPDN on plant growth and development remain unknown, despite recent evidence documenting long‐term effects of daytime VPD on plant anatomy, growth and productivity. Here we hypothesized that plant anatomical and functional traits influencing leaf and root hydraulics could be influenced by long‐term exposure to VPDN. A total of 23 leaf and root traits were examined on four wheat (Triticum aestivum) genotypes, which were subjected to two long‐term (30 day long) growth experiments where daytime VPD and daytime/nighttime temperature regimes were kept identical, with variation only stemming from VPDN, imposed at two levels (0.4 and 1.4 kPa). The VPDN treatment did not influence phenology, leaf areas, dry weights, number of tillers or their dry weights, consistently with a drought and temperature‐independent treatment. In contrast, vein densities, adaxial stomata densities, TRN and cuticular TR, were strongly increased following exposure to high VPDN. Simultaneously, whole‐root system xylem sap exudation and seminal root endodermis thickness were decreased, hypothetically indicating a change in root hydraulic properties. Overall these results suggest that plants ‘sense’ and adapt to variations in VPDN conditions over developmental scales by optimizing both leaf and root hydraulics.  相似文献   

2.
3.
4.
Increasing evidence suggests that in crops, nocturnal water use could represent 30% of daytime water consumption, particularly in semi‐arid and arid areas. This raises the questions of whether nocturnal transpiration rates (TRN) are (1) less influenced by drought than daytime TR (TRD), (2) increased by higher nocturnal vapor pressure deficit (VPDN), which prevails in such environments and (3) involved in crop drought tolerance. In this investigation, we addressed those questions by subjecting two wheat genotypes differing in drought tolerance to progressive soil drying under two long‐term VPDN regimes imposed under naturally fluctuating conditions. A first goal was to characterize the response curves of whole‐plant TRN and TRN/TRD ratios to progressive soil drying. A second goal was to examine the effect of VPDN increase on TRN response to soil drying and on 13 other developmental traits. The study revealed that under drought, TRN was not responsive to progressive soil drying and – intriguingly – that TRN seemingly increased with drought under high VPDN consistently for the drought‐sensitive genotype. Because TRD was concomitantly decreasing with progressive drought, this resulted in TRN representing up to 70% of TRD at the end of the drydown. In addition, under drought, VPDN increase was found not to influence traits such as leaf area or stomata density. Overall, those findings indicate that TRN contribution to daily water use under drought might be much higher than previously thought, that it is controlled by specific mechanisms and that decreasing TRN under drought might be a valuable trait for improving drought tolerance.  相似文献   

5.
6.
Abstract

Aquaporin (AQP) 1 and AQP 4 are members of the aquaporin water channel family that play an important role in reabsorption of water from the renal tubular fluid to concentrate urine. Studies of renal AQPs have been performed in human, rodents, sheep, dogs and horses. We studied nephron segment-specific expression of AQP 1 and AQP 4 using immunohistochemical staining on paraffin sections of bovine kidneys. AQP 1 was moderately expressed in endothelium of the cortical capillary network, vasa recta, and glomerular capillaries. AQP 4 was moderately expressed only in cytoplasm of epithelial cells in proximal tubules. We concluded that AQP 1 and AQP 4 in the bovine kidney showed some differences from other species in renal trans-epithelial water transport.  相似文献   

7.
8.
Aquaporins (AQPs) are water channel proteins that participate in water transport. In the principal cells of the kidney collecting duct, water reabsorption is mediated by the combined action of AQP2 in the apical membrane and both AQP3 and AQP4 in the basolateral membrane, and the expression of AQP2 and AQP3 is regulated by antidiuretic hormone and water restriction. The effect of hypertonicity on AQP3 expression in Madin-Darby canine kidney (MDCK) epithelial cells was investigated by exposing the cells to hypertonic medium containing raffinose or NaCl. Northern blot and immunoblot analyses revealed that the amounts of AQP3 mRNA and AQP3 protein, respectively, were markedly increased by exposure of cells to hypertonicity. These effects were maximal at 12 and 24 h, respectively. Immunofluorescence and immunoelectron microscopy also demonstrated that the abundance of AQP3 protein was increased in cells incubated in hypertonic medium and that the protein was localized at the basolateral plasma membrane. These results indicate that the expression of AQP3 is upregulated by hypertonicity.  相似文献   

9.
This study applies a novel, vertically stratified fogging protocol to document arthropod abundance, density, and biomass across a vertical gradient in a primary, lowland dipterocarp forest canopy in Borneo. We fogged arthropods at 5 m vertical intervals and 20 m horizontal intervals along six full‐canopy transects and measured leaf surface areas along the same transects. The results show that arthropod biomass in the aboveground regions was 23.6 kg/ha, the abundance was 23.9 million individuals/ha, and the density on leaf surfaces was 280 individuals/m2 leaf area. All three numbers are five to ten times higher than estimated by previous surveys of tropical lowland rain forest canopies using mass‐collection techniques. Arthropod abundance and biomass were analyzed in relation to canopy structure, composition, vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and height. Using stepwise regression we found that 13 of 14 arthropod groups had significant positive relationships with one‐sided leaf area, 11 had significant negative relationships with VPD, 3 had significant relationships with height, and none showed positive relationships with light. Classifying the 14 taxa based on their responses to leaf area and VPD created three groups that corresponded roughly to the biology of these taxa. This study suggests that the biomass and abundance, and perhaps therefore—by extrapolation—the biodiversity, of tropical canopy arthropods may be very much higher than previously estimated.  相似文献   

10.
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.  相似文献   

11.
Food allergies have become increasingly prevalent during the past few decades. Diarrhea is one of the most frequent intestinal symptoms caused by food allergens and is characterized by imbalanced ion exchange and water transfer; however, the underlying mechanism of allergic diarrhea remains unclear. Water transfer across the intestinal epithelial membrane seems to occur via aquaporins (AQPs). However, the molecular mechanism of water transfer and the pathophysiological roles of aquaporins in the intestine have not been fully established. The present studies have focused on the alterations of AQPs in a mouse model of allergic diarrhea in which BALB/c mice developed diarrhea following repeated challenges of orally administered ovalbumin. Quantitative real-time PCR analysis and immunohistochemical technique were used for expression of mRNA and protein of AQPs, respectively. AQP4 and AQP8 mRNA levels were significantly decreased in the proximal colon of allergic mice compared to controls; likewise, expression of AQP4 and AQP8 proteins was reduced in the proximal colon of the allergic mice. These results suggest that allergic diarrhea is associated with a downregulation in AQP4 and AQP8 expression.  相似文献   

12.
Background information. The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe ( 2004 ) Cell Struct. Funct. 29 , 85–90]. Results. In the present study, we cloned an AQP gene from A. proteus [ApAQP (A. proteus AQP)] that encodes a 295‐amino‐acid protein. The protein has six putative TMs (transmembrane domains) and two NPA (Asn‐Pro‐Ala) motifs, which are conserved among various AQPs and are thought to be involved in the formation of water channels that span the lipid bilayer. Using Xenopus oocytes, we have demonstrated that the ApAQP protein product can function as a water channel. Immunofluorescence microscopy with anti‐ApAQP antibody revealed that ApAQP is detected on the CV membrane and on the vesicles around the CV. The presence of V‐ATPase (vacuolar H+‐ATPase) on the vesicle membrane around the CV was also detected. Conclusions. Our data on ApAQP allow us to provide the first informed explanation of the high water permeability of the CV membrane in amoeba. Moreover, the results suggest that vesicles possessing V‐ATPase are involved in generating an osmotic gradient. Based on our findings, we propose a new hypothesis for the mechanism of CV function.  相似文献   

13.
14.
15.
Aquaporins (AQPs) facilitate the passive flux of water across biological membranes in response to an osmotic pressure. A number of AQPs, for instance in plants and yeast, have been proposed to be regulated by phosphorylation, cation concentration, pH change, or membrane-mediated mechanical stress. Here we report an extensive set of molecular dynamics simulations of AQP1 and AQP4 subject to large membrane potentials in the range of ±1.5 V, suggesting that AQPs may in addition be regulated by an electrostatic potential. As the regulatory mechanism we identified the relative population of two different states of the conserved arginine in the aromatic/arginine constriction region. A positive membrane potential was found to stabilize the arginine in an up-state, which allows rapid water flux, whereas a negative potential favors a down-state, which reduces the single-channel water permeability.  相似文献   

16.
Aquaporins (AQPs) were originally identified as channels facilitating water transport across the plasma membrane. They have a pair of highly conserved signature sequences, asparagine-proline-alanine (NPA) boxes, to form a pore. However, some have little conserved amino acid sequences around the NPA boxes unclassifiable to two previous AQP subfamilies, classical AQPs and aquaglyceroporins. These will be called unorthodox AQPs in this review. Interestingly, these unorthodox AQPs have a highly conserved cysteine residue downstream of the second NPA box. AQPs also have a diversity of functions: some related to water transport such as fluid secretion, fluid absorption, and cell volume regulation, and the others not directly related to water transport such as cell adhesion, cell migration, cell proliferation, and cell differentiation. Some AQPs even permeate nonionic small molecules, ions, metals, and possibly gasses. AQP gene disruption studies have revealed their physiological roles: water transport in the kidney and exocrine glands, glycerol transport in fat metabolism and in skin moisture, and nutrient uptakes in plants. Furthermore, AQPs are also present at intracellular organelles, including tonoplasts, mitochondria, and the endoplasmic reticulum. This review focuses on the evolutionary aspects of AQPs from bacteria to humans in view of the structural and functional diversities of AQPs.  相似文献   

17.
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (Pf) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3 , ZmPIP2;1 , ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the Pf. Interestingly, we found that the Pf were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell Pf.  相似文献   

18.
19.
Aquaporins (AQPs) accelerate the movement of water and other solutes across biological membranes, yet the molecular mechanisms of each AQP's transport function and the diverse physiological roles played by AQP family members are still being defined. We therefore have characterized an AQP in a model organism, Drosophila melanogaster, which is amenable to genetic manipulation and developmental analysis. To study the mechanism of Drosophila Malpighian tubule (MT)-facilitated water transport, we identified seven putative AQPs in the Drosophila genome and found that one of these, previously named DRIP, has the greatest sequence similarity to those vertebrate AQPs that exhibit the highest rates of water transport. In situ mRNA analyses showed that DRIP is expressed in both embryonic and adult MTs, as well as in other tissues in which fluid transport is essential. In addition, the pattern of DRIP expression was dynamic. To define DRIP-mediated water transport, the protein was expressed in Xenopus oocytes and in yeast secretory vesicles, and we found that significantly elevated rates of water transport correlated with DRIP expression. Moreover, the activation energy required for water transport in DRIP-expressing secretory vesicles was 4.9 kcal/mol. This low value is characteristic of AQP-mediated water transport, whereas the value in control vesicles was 16.4 kcal/mol. In contrast, glycerol, urea, ammonia, and proton transport were unaffected by DRIP expression, suggesting that DRIP is a highly selective water-specific channel. This result is consistent with the homology between DRIP and mammalian water-specific AQPs. Together, these data establish Drosophila as a new model system with which to investigate AQP function. fluid homeostasis; osmosis; channel; membrane  相似文献   

20.
This work was undertaken in an effort to reconcile the conflicting proline-accumulating responses of the barley (Hordeum vulgare L.) cultivars, Excelsior and Proctor, reported by Singh et al. (1972) and Hanson et al. (1976). It deals with the effects of different vapor pressure deficits (VPD) during growth and subsequent drought stress on several barley cultivars. A higher VPD (1.2 kilopascals) during Clipper seedling growth resulted in higher solute-accumulating ability, seemingly independently of leaf water potential, than a lower VPD (0.12 kilopascals). The higher VPD during stress also resulted in higher solute contents, and this response may be more closely related to leaf water potential. When the responses of Excelsior and Proctor were examined in detail, it was found that the relative proline-accumulating ability of the two cultivars was dependent upon the VPD under which they were grown. At low VPD, Proctor accumulated significantly more proline than did Excelsior; whereas at higher VPD, Excelsior accumulated more proline than did Proctor. The crossover occurred at a VPD of about 0.72 kilopascals. This reversal of cultivar response was enhanced by multiplying seed under the two VPD extremes. Glycinebetaine accumulation did not demonstrate the crossover effect, although the concentration of this compound in all cultivars also depended on the VPD prevailing during growth and/or stress. Solute levels, in general, were more closely related to the decrease in relative water content than to a decrease in leaf water potential. It is concluded that the conflicting proline-accumulating responses of Excelsior and Proctor could be explained by these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号