首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

2.
The addition of 1-aminocyclopropane-1-carboxylic acid (ethylene precursor), or 2-chloroethylphosphonic acid (ethephon, an ethylene-releasing compound) decreased root dry weight and l-DOPA (l-3,4-dihydroxyphenylalanine) accumulation in hairy root cultures of Stizolobium hassjoo. The inhibition caused by ethephon-mediated ethylene release was alleviated by 0.5 mg CoCl2 l–1 as an inhibitor of ethylene biosynthesis. The action of ethylene was inhibited by 1.5 mg AgNO3 l–1. Ethylene thus lowers hairy root formation and l-DOPA production; CoCl2 decreases ethylene formation leading to a considerably improved root dry weight and l-DOPA production.  相似文献   

3.
Methods are described for obtaining explants which produce adventitious shoots, for subsequent stimulation of rooting and then transplanting using six commercial sugar-beet cultivars. The rate of adventitious shoot regeneration from petioles or intact leaf explants was affected by the source of donor plants, cytokinin type (BAP or Kin) and concentration and cultivar. Increasing the sucrose concentration of the medium from 3% to 5% or 8% had no apparent effect. Adventitious shoots could be produced directly from callus formed on the base of the petioles. In general adventitious shoots were produced on either the concave surface of the petiole or from the callus, occasionally simultaneously on both, and on the convex surface of the petiole in intact leaf explants. The highest rooting rate with 3% sucrose and 1.0 mg l–1 NAA was obtained using half-strength MS medium. There was considerable variation in the propagules from petioles or callus indicating that this system may provide valuable somaclonal variation.Abbreviations BAP benzylaminopurine - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid Author for correspondence  相似文献   

4.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

5.
Two plant regeneration methods applicable to Leucaenaleucocephala were developed. In the first method, involvingorganogenesis via callus formation, cotyledon, hypocotyl and root segments wereinitiated on MS medium containing different concentrations ofN6-benzyladenine (BA), 2,4-dichlorophenoxyacetic acid (2,4-D), andnaphthaleneacetic acid (NAA). Both compact (type I) and friable (type II) calliwere obtained from the cotyledon and hypocotyl explants treated with differentconcentrations of the growth regulators. Shoots were generated only from thefriable calli formed from the cotyledon explants. The calli formed from thehypocotyl explants did not generate shoots and the root explants died withoutforming callus. Cotyledon explants from 3–4 day old seedlings showedmaximum callus induction compared to those from older seedlings. In a secondmethod involving direct organogenesis, excised cotyledons were cultured on 1/2MS medium containing 10–35 mg l–1N6-benzyladenine (BA) for 7–14 days. Transfer of thecotyledonsto regeneration medium containing low BA resulted in callus formation andsubsequent shoot regeneration from the base of the excised cotyledon explants,with up to 100% frequency. Regenerated shoots rooted best on a basal mediumcontaining no growth regulators.  相似文献   

6.
Root segments obtained from aseptically germinated seedlings of Brassica napus cv. Westar were used to optimize conditions for high-frequency shoot bud differentiation. The presence of low kinetin (0.5 M) and relatively high indole-butyric acid (1.0 M) levels facilitated optimum shoot bud differentiation. Modified MS medium (MMS) was superior to the other three basal media tested (MS, B5 and White's). Elevated sodium dihydrogen phosphate levels increased the differentiation of shoot buds. Increasing or decreasing the level of sucrose from 3% reduced the frequency of explants forming shoot buds. Addition of glutamine enhanced both the frequency of responding explants, as well as the number of shoots per responding explant. Root segments from 13-day-old seedlings produced the highest response (58%) in the presence of 100 mg l-1 glutamine. The position of the segment on the main root, size, and the presence or absence of lateral roots altered the morphogenic response. Sealing of the donor seedling cultures with Parafilm® instead of Stretch' n seal® resulted in a higher production of shoot buds, although root segment cultures were not affected by the type of sealing. Spontaneous rooting occurred on all developed shoots.Dedicated to Dr. Friedrch Constabel on the occasion of his 60th birthday  相似文献   

7.
Axillary shoot bud multiplication has been achieved in Eucalyptus tereticornis Smith. using explants from different regions of 8–10 years old elite trees, growing in the field. Results showed that addition of NAA at 0.1 mgl-1 and BAP at 1.0 mgl-1 to modified MS medium induced maximum number of shoot buds. For inducing axial growth in regenerated bud promordia, the hormone concentration of the medium was lowered. The addition of charcoal and gibberellic acid to the medium were beneficial. Rooting was best in Knop's medium containing 1.0 mgl-1 IBA. The key factor in root induction was primarily a dark incubation for a short period. The percentage of both rooting of shoots and survival of the rooted shoots was 60–80.Continuous trials using explants from the elite trees throughout the year showed that the period between July–September was the best season for the explant source for rapid and increased multiplication of axillary buds. Phenolic exudation was also minimum at this period. The experiments were repeated using 50 populations from different plantations. It was observed that during culture, genotypically different populations responded differently in spite of optimal growth conditions.  相似文献   

8.
The influence of ethylene on shoot formation from GF-677 (Prunus persica × P. amygdalus) shoot tip explants was studied in vitro. Cultures in test tubes were placed inside 5 1 glass jars and supplemented with various ethylene concentrations (0–10 ppm). Ethylene at 0.1 ppm, applied during the first 2 weeks of culture, increased the number and the length of shoots produced in vitro. Test tubes with cultures sealed with various types of closure accumulated in their atmosphere different levels of ethylene ranging from 0.1 to 1.2 ppm, depending on the type of closure. Test tubes with cotton-wool bungs had the least while those with serum stoppers had the highest amount of ethylene. The maximum number of shoots was recorded in test tubes covered with serum stoppers. The ethylene concentration was related linearly (R=0.974) to the shoot number and exponentially (R=0.975) to the shoot length.Abbreviations BA benzyladenine - IAA indoleacetic acid - HSD honestly significant difference  相似文献   

9.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

10.
Summary Stem segments from apical shoot tips of Polygala myrtifolia were used as primary explants to establish in vitro cultures. Axillary shoots produced on non-contaminated explants were excised and recultured in the same medium to increase the stock of shoot cultures. Equal molar concentrations of five cytokinins [2-isopentenyladenine, kinetin, zeatin, N 6-benzyladenine (BA), and adenine] were tested for ability to induce axillary shoot development from double-node stem segments. The highest rate of axillary shoot proliferation was induced on Murashige and Skoog agar medium supplemented with 1.8 μM BA. Seven indole-3-acetic acid (IAA) concentrations (0, 2.9, 5.7, 8.6, 11.4, 14.3, 17.1 μM) were tested to determine the optimum conditions for in vitro rooting of microshoots. Up to 72% of the microshoots rooted with 14.3 μM IAA. Other auxins tested, α-naphthaleneacetic acid and indole-3-butyric acid, were less effective than IAA in inducing adventitious root formation. All rooted plantlets having more than three roots were successfully established in soil.  相似文献   

11.
In this work, a combined HPLC-ELISA technique was used to associate in vitro rooting capacity of tree peony micro-cuttings with contents of cytokinin and auxin; the cytokinin mainly detected corresponded to the N6-benzyladenine which had been added to the multiplication medium. Rooting capacity of explants was favoured by a preliminary accumulation of endogenous IAA only when levels of the BA absorbed from the multiplication medium had decreased. Main shoots coming from a 5-weeks subculture fulfilled these hormonal conditions and were the best microcuttings for rooting (87% rooting). Main shoots coming from shorter cycles or axillary shoots coming from a 5-weeks cycle always contained high benzyladenine levels and had a low rooting capacity (25–55% rooting). Root induction was associated with an early peak of indole-3-acetic acid followed by a 10-fold lower peak of endogenous ribofuranosyl-isopentenyladenine. Only a low and transitory accumulation of isopentenyladenine occurred during root development, and this could explain the lack of shoot development. Root development was efficient, especially in a medium containing activated charcoal, which led to an almost 3-fold decrease of IAA contents in roots.Abbreviations AC activated charcoal - BA N6-benzyladenine - ELISA enzyme linked immunosorbent assay - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - IBA indole-3-butyric acid - iP N6-(2-isopentenyl)adenine - RDM root development medium - RIM root induction medium - 9RIP 9--d-ribofuranosyl-iP - 9RZ 9--d ribofuranosyl-zeatin - Z zeatin  相似文献   

12.
Growth of Escherichia coli strain B SPAO on a medium containing glucose, NH4Cl and methionine resulted in production of ethylene into the culture headspace. When methionine was excluded from the medium there was little formation of ethylene. Ethylene formation in methionine-containing medium occurred for a brief period at the end of exponential growth. Ethylene formation was stimulated by increasing the medium concentration of Fe3+ when it was chelated to EDTA. Lowering the medium phosphate concentration also appeared to stimulate ethylene formation. Ethylene formation was inhibited in cultures where NH4Cl remained in the stationary phase. Synthesis of the ethylene-forming enzyme system was determined by harvesting bacteria at various stages of growth and assaying the capacity of the bacteria to form ethylene from methionine. Ethylene forming capacity was greatest in cultures harvested immediately before and during the period of optimal ethylene formation. It is concluded that ethylene production by E. coli exhibits the typical properties of secondary metabolism.Abbreviations HMBA 2-Hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - KMBA 2-keto-4-methylthiobutyric acid - MOPS 3-[N-morpholino] propanesulphonic acid  相似文献   

13.
Summary The influence of PPMTM on somatic embryogenesis in melon, adventitious shoot organogenesis in petunia, and androgenesis in tobacco was studied by culturing explants in regeneration media supplemented with 0, 2, 5 or 10 ml l−1 PPM for 8–12 wk. The percentage of melon cotyledon explants that produced callus and somatic embryos and the number of embryos per explant were reduced when incubated in embryo initiation and embryo development media containing more than 5 ml l−1 PPM. Less PPM was required to inhibit petunia shoot organogenesis. The number of shoots and number of buds per Petri dish were reduced 3–6.9-fold when leaf explants were incubated in shoot regeneration medium containing more than 2 ml l−1 PPM. In contrast, the addition of up to 10 ml l−1 PPM to tobacco anther culture medium had no effect on androgenesis. Our results suggest that the influence of PPM on plant regeneration depends on the plant species. We recommend that experimenters examine a range of PPM concentrations when using it for the first time on an untested plant species.  相似文献   

14.
This study reports a protocol for successful micropropagation of Penthorum chinense using nodal explants on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA) or kinetin (Kn). The presence of BA promoted a higher rate of shoot multiplication than Kn. Maximum multiple shoot formation was observed in 59.2% of nodal explants cultured on MS medium supplemented with 2.0 mg l−1 BA after 6 wk. After subculture for 4 wk, the maximum number of shoots (6.4) was obtained on a medium with 2.0 mg l−1 BA, but shoots were too short and not suitable for micropropagation. The taller shoots that regenerated in the presence of lower BA concentration (1.0 mg l−1) were selected for root induction study. Most shoots (98.8%) rooted in the presence of 0.5 mg l−1 indole-3-acetic acid after 3 wk, with each shoot forming an average of 10.0 roots. Plantlets were transferred to soil and successfully acclimatized.  相似文献   

15.
A method for micropropagation of Campanula isophylla Moretti is described. The method is based on division of the basal parts of shoot clusters into sections, each with four 3 mm stem stubs. Shoots from the shoot clusters are easy to root and give plants without apparent phenotypic aberrations. It is thus possible to propagate the stock and produce rooted plantlets in the same process. Basal sections of shoot clusters formed more shoots than shoot tips or single nodes. The medium used for propagation was MS with 4.4 M benzyladenine (BA). Addition of naphthaleneacetic acid or raising the concentration of BA did not improve the results significantly. As primary explants 2 mm stem segments with an axillary or apical bud were used; smaller explants often failed to grow. For rooting the concentration of macronutrients was reduced to one-half, and BA was omitted. The cultures received an irradiance of 20 mol m-2 s-1 fluorescent light; dry weight of shoots decreased if the irradiance was reduced. The method was used for propagation of 113 genotypes; shoot numbers and days to first root differed significantly among genotypes.  相似文献   

16.
In vitro plant regeneration of Agave fourcroydes Lem. (Agavaceae) is described. Results suggest that the NO3 -:NH4 + balance in the culture medium is a key factor controlling callus growth and organogenesis in rhizome cultures. Stem callus showed limited organogenic capacity, but high cytokinin concentrations induced adventitious shoot formation on stem explants. When these shoots were excised and subcultured, new callus formed at their base from which new shoots arose. The shoots from stem explants and rhizome callus formed extensive root systems in vitro and were transferred to pot culture with a 90% survival rate.  相似文献   

17.
A protocol for multiple shoot induction from cotyledonary node explants of Terminalia chebula Retz. has been developed. Germination frequency of embryos (up to 100 %) was obtained on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm–3 gibberellic acid (GA3). Maximum number of shoots (6.4 shoots per cotyledonary node) was obtained on half-strength MS + 0.3 mg dm–3 GA3+ 1.0 mg dm–3 indole-3-butyric acid (IBA) + 10.0 mg dm–3 benzylaminopurine (BAP) after 4 weeks of culture. When the cotyledonary nodes along with the axillary shoot buds were allowed to grow in the same medium upto 19.2 shoots were obtained after 8 – 9 weeks. Best rooting (100 %, 5.5 roots per shoot) was observed when shoots were excised and transferred to half-strength MS medium containing 1.0 mg dm–3 IBA + 1 % mannitol and 1.5 % sucrose. Survival of rooted plants in vivo was low (35 – 40 %) when they were directly transferred to soil in glasshouse. However, transfer to soil with MS nutrients and 1.0 mg dm–3 IBA in culture room for a minimum duration of 2 weeks increased the survival percentage of plants to 100 %.  相似文献   

18.
Epilobium angustifolium L. (fireweed) is a medicinal plant that has been used to treat diarrhea, mucous colitis, irritable-bowel syndrome, skin problems, prostate problems, menstrual disorders, asthma, whooping cough, and hiccups. A highly efficient and rapid regeneration system via multiple shoot formation was developed for fireweed. Explants (leaf, petiole, root, and stem segments) excised from sterile seedlings were cultured on medium supplemented with different concentrations and combinations of various plant growth regulators. Explant browning, a major problem for regeneration, was overcome by adding 100 mg/l ascorbic acid to all prepared media containing growth regulator combinations. Root explants formed more shoots than other explants. Best shoot proliferation was obtained from root explants cultured on media with 0.1 mg/l BA and 0.5 mg/l IAA. Regenerated shoots were transferred to rooting media containing different concentrations of IAA, IBA, NAA or 2,4-D. Most shoots developed roots on medium with 0.5 mg/l IAA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 3 weeks they were planted in to plastic pots containing potting soil and maintained in the plant growth room.  相似文献   

19.
In order to investigate the regeneration of wild beet (Beta maritima) from inflorescence pieces, the effects of growth regulator, genotype, explant source and stage of plant development on adventitious shoot formation and rooting in vitro and subsequent transplanting in the glasshouse were tested. Inflorescence tips produced more adventitious shoots than sub-apical segments and the best micropropagation was achieved on a Murashige and Skoog (MS) medium supplemented with 1.0 mg l–1 BAP. Addition of auxin was not beneficial. The induction rate of adventitious shoots was genotype-dependent and influenced by the stage of plant development. Adventitious shoots were produced from the base of the flower buds, i.e. from the receptacle, not from axils or stalks and only a few buds on inflorescence tip explants produced adventitious shoots. Rooting was increased by using a MS medium with 3% sucrose supplemented with 1.0 mg l–1 NAA. There was no variation in leaf morphology of the transplants. This work shows that inflorescence tips can be used successfully as explants for in vitro multiplication of sugar beet and wild beet.Abbreviations BAP benzylaminopurine - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid Author for correspondence  相似文献   

20.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号