首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
HELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive. Here, we investigated this question in mice using the Helqgt and Fancc strains. Compared with Fancc/ mice lacking FANCC, a component of the FA core complex, Helqgt/gt mice exhibited a mild of form of FA-like phenotypes including hypogonadism and cellular sensitivity to the crosslinker mitomycin C. However, unlike Fancc/ primary fibroblasts, Helqgt/gt cells had intact FANCD2 mono-ubiquitination and focus formation. Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helqgt/gt;Fancc/ double mutants displayed significantly worsened phenotypes than either single mutant. Importantly, this was most noticeable for the suppression of spontaneous chromosome instability such as micronuclei and 53BP1 nuclear bodies, known consequences of persistently stalled replication forks. These findings suggest that mammalian HELQ contributes to genome stability in unchallenged conditions through a mechanism distinct from the function of FANCC.  相似文献   

2.
Portin P  Rantanen M 《Genetica》2000,108(1):87-90
Analysis of the interchromosomal effects of In(2L+2R)Cy, In(3L+3R)LVMand their joint effect on the frequencies of single and double crossovers in the cv-v-fregion of the X chromosome as well as interference showed that both inversions, occurring separately, increased the frequency of single as well as double crossovers and the coefficient of coincidence. However, when the inversions occurred together the frequencies of single crossovers no longer increased, but the frequency of double crossovers, as well as the coefficient of coincidence did increase. These results indicate firstly that the interchromosomal effects influence some precondition of exchange, but that this precondition is not an occurrence of double strand DNA breaks. Thus, the occurrence of double strand DNA breaks is not the sole condition for crossing over in Drosophila melanogaster.  相似文献   

3.
Summary Some aspects of DNA repair in several radiation-resistant and radiation-sensitive strains of Dictyostelium discoideum were investigated by using alkaline sucrose gradients to analyze for the production and resealing of single-strand breaks following irradiation with 254 nm UV. All radiation-resistant strains and all mutants assayed that are sensitive to both UV and 60Co gamma rays produced singlestrand breaks in their nuclear DNA after a UV fluence of 15 J/m2. Mutants at the radC locus which are sensitive to UV but as resistant as their parental strains to 60Co gamma rays produced many fewer single-strand breaks in their DNA after irradiation with UV. Thus, the radC mutations alter a repair pathway specific for UV-induced DNA damage and presumably affect the activity of a UV-damage-specific endonuclease involved in excision repair. All radiation-resistant strains and all of our mutants sensitive to gamma rays rejoined much of their DNA during a three-hour post-UV-irradiation incubation, suggesting that these strains have at least a partially intact excision repair system.Abbreviations used UV ultraviolet light - PBS phosphate buffered saline - cpm counts per minute  相似文献   

4.
The mus(2)201 locus in Drosophila is defined by two mutant alleles that render homozygous larvae hypersensitive to mutagens. Both alleles confer strong in vivo somatic sensitivity to treatment by methyl methanesulfonate, nitrogen mustard and ultraviolet radiation but only weak hypersensitivity to X-irradiation. Unlike the excision-defective mei-9 mutants identified in previous studies, the mus(2)201 mutants do not affect female fertility and do not appear to influence recombination proficiency or chromosome segregation in female meiocytes.—Three independent biochemical assays reveal that cell cultures derived from embryos homozygous for the mus(2)D1 allele are devoid of detectable excision repair. 1. Such cells quantitatively retain pyrimidine dimers in their DNA for 24 hr following UV exposure. 2. No measurable unscheduled DNA synthesis is induced in mutant cultures by UV treatment. 3. Single-strand DNA breaks, which are associated with normal excision repair after treatment with either UV or N-acetoxy-N-acetyl-2-aminofluorene,* are much reduced in these cultures. Mutant cells possess a normal capacity for postreplication repair and the repair of single-strand breaks induced by X-rays.  相似文献   

5.
Replication protein A (RPA) is involved in many aspects of DNA metabolism including meiotic recombination. Many species possess a single RPA1 gene but Arabidopsis possesses five RPA1 paralogues. This feature has enabled us to gain further insight into the meiotic role of RPA1. Proteomic analysis implicated one of the AtRPA1 family (AtRPA1a) in meiosis. Immunofluorescence studies confirmed that AtRPA1a is associated with meiotic chromosomes from leptotene through to early pachytene. Analysis of an Atrpa1a mutant revealed that AtRPA1a is not essential at early stages in the recombination pathway. DNA double‐strand breaks are repaired in Atrpa1a, but the mutant is defective in the formation of crossovers, exhibiting a 60% reduction in chiasma frequency. Consistent with this, localization of recombination proteins AtRAD51 and AtMSH4 appears normal, whereas the numbers of AtMLH1 and AtMLH3 foci at pachytene are significantly reduced. This suggests that the defect in Atrpa1a is manifested at the stage of second‐end capture. Analysis of Atrpa1a/Atmsh4 and Atrpa1a/Atmlh3 double mutants indicates that loss of AtRPA1a predominantly affects the formation of class I, interference‐dependent crossovers.  相似文献   

6.
Summary A deficiency in DNA polymerase I increased the ultraviolet (UV) radiation sensitivity of a uvrA strain of Escherichia coli K-12 when plated on minimal growth medium. The slope of the survival curve for the uvrA polA strain was 2.0-times greater than that for the uvrA strain. The fluence-dependent yield of unrepaired deoxyribonucleic acid (DNA) parental-strand breaks following UV irradiation and incubation in minimal growth medium was similar in both strains. However, the fluence-dependent yield of unrepaired DNA daughter-strand gaps observed following UV irradiation was 1.8-fold greater in the uvrA polA strain than in the uvrA strain. These results suggest that DNA polymerase I is involved in the filling of at least some daughter-strand gaps during postreplication repair. Also, the uvrA polA strain was sensitized by a post-UV treatment with chloramphenicol (CAP) to a similar extent as was the uvrA strain, indicating that DNA polymerase I is not involved in the CAP-inhibitable pathway of postreplication repair.  相似文献   

7.
The complete human nucleotide excision repair gene FRCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

8.
Exposure to solar radiation can cause mortality in natural communities of pico‐phytoplankton, both at the surface and to a depth of at least 30 m. DNA damage is a significant cause of death, mainly due to cyclobutane pyrimidine dimer formation, which can be lethal if not repaired. While developing a UV mutagenesis protocol for the marine cyanobacterium Prochlorococcus, we isolated a UV‐hyper‐resistant variant of high light‐adapted strain MED4. The hyper‐resistant strain was constitutively upregulated for expression of the mutTphrB operon, encoding nudix hydrolase and photolyase, both of which are involved in repair of DNA damage that can be caused by UV light. Photolyase (PhrB) breaks pyrimidine dimers typically caused by UV exposure, using energy from visible light in the process known as photoreactivation. Nudix hydrolase (MutT) hydrolyses 8‐oxo‐dGTP, an aberrant form of GTP that results from oxidizing conditions, including UV radiation, thus impeding mispairing and mutagenesis by preventing incorporation of the aberrant form into DNA. These processes are error‐free, in contrast to error‐prone SOS dark repair systems that are widespread in bacteria. The UV‐hyper‐resistant strain contained only a single mutation: a 1 bp deletion in the intergenic region directly upstream of the mutTphrB operon. Two subsequent enrichments for MED4 UV‐hyper‐resistant strains from MED4 wild‐type cultures gave rise to strains containing this same 1 bp deletion, affirming its connection to the hyper‐resistant phenotype. These results have implications for Prochlorococcus DNA repair mechanisms, genome stability and possibly lysogeny.  相似文献   

9.
Summary The effect of the ligts-7 mutation on cell survival and the extent of DNA repair after UV (254 nm) irradiation was determined for wild-type and uvrB5 cells of E. coli K-12 at 30° and 42°C. At the restrictive temperature (42°C) the ligts-7 mutation resulted in (i) a decrease in the extent of repair of DNA incision breaks arising during the excision repair process, and (ii) a decrease in the extent of post-replicational repair of gaps in newly-synthesized DNA. These deficiencies in DNA repair correlated with increases in cellular sensitivity to killing by UV radiation. Thus, DNA ligase plays an important role in vivo in both the excision and post-replicational repair processes.  相似文献   

10.
Summary Male strains of Escherichia coli K12 excrete a protein which stimulates recombination in conjugation. The properties of four Rsf- mutants unable to produce this recombination-stimulating factor (RSF) have been studied. Two of the mutants have a pleiotropic phenotype which includes hypersensitivity to the lethal effects of ultraviolet (UV) and monofunctional alkylating agents (MAA) and markedly decreased growth rates at elevated temperatures. The latter property is associated with a diminished rate of DNA synthesis. Many more single-strand breaks are detected in the DNA of the pleiotropic mutants after MAA treatment than in the wild type, which are, however, repaired during incubation of the Rsf- cells after the treatment. No changes in UV-induced DNA breakdown or in host-cell reactivation of bacteriophage T1 have been detected in the mutant. The complete restoration of the wild type characters in Rsf+ revertants of these mutants proves that their complex phenotype is due to a single pleiotropic mutation. The integration of the wild type F factor into the chromosome of a derivative of a pleiotropic mutant retaining a portion of a previously integrated sex factor results in the complete restoration of the wild phenotype, which implies that the Rsf- mutation is located in the episomal DNA. These results show that some products specified by the F factor are necessary for the maintaince of the wild phenotype of Hfr cells. Possible mechanisms of this phenomenon are discussed.  相似文献   

11.
Summary Mechanisms of inefficiency in heterospecies transformation were studied with a transformation system consisting of Bacillus subtilis 168TI (trpC2 thy) as recipient and of DNA prepared from partially hybrid strains of B. subtilis which had incorporated trp + DNA of B.amyloliquefaciens 203 (formerly, B.megaterium 203) in the chromosome (termed intergenote). The intergenote transformation was not so efficient as the corresponding homospecies transformation and the efficiency appeared to relate inversely with the length of heterologous portion in the intergenote. When a variety of ultraviolet light (UV) sensitive mutants, deficient in host-cell reactivation capacity, were used as recipients for the intergenote transformation, 2 out of 16 mutants exhibited significantly enhanced transformation efficiency of the trpC marker. Genetic studies by transformation showed that the trait relating to the enhancement of intergenote-transformation efficiency was always associated with the UV sensitivity, suggesting that these two traits are determined by a single gene. The efficiency of intergenote transformation was highly affected also by DNAconcentration; the lower the concentration, the less the efficiency. When, however, the UV sensitive mutant was used as recipient, the effect of DNA concentration was largely diminished, suggesting the reduction of DNA-inactivating activity in the UV sensitive recipient. These results were discussed in relation to a possible excision-repair system selectively correcting the mismatched DNA in in the course of intergenote transformation.This work was supported by a Grant-in-Aid for scientific research from the Ministry of Education, Japan.  相似文献   

12.
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1gt/gt mice, the overall survival rates of the Mcph1gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.  相似文献   

13.
Sex chromosome associated satellite DNAs isolated from the snakes Elaphe radiata (sat III) (Singh et al., 1976) and Bungarus fasciatus (Elapidae) (minor satellite) are evolutionarily conserved throughout the suborder Ophidia. An autosome limited satellite DNA (B. fasciatus major satellite) is not similarly conserved. Both types of satellites have been studied by in situ hybridisation in various somatic tissues and germ cells where it has been observed that the W sex chromosome remains condensed in interphase nuclei. In growing oocytes however, the W chromosome satellite rich heterochromatin decondenses completely whilst the autosomal satellite rich regions remain condensed. Later, the cycle is reversed and the W chromosome condenses whilst the autosomal satellite regions decondense. In a primitive snake (Eryx johni johni) where the sex chromosomes are not differentiated and where there is no satellite DNA specific to them, these phenomena are absent. — The differential behaviour of autosomal and sex chromosome associated satellite DNAs is discussed in the light of gene regulation.  相似文献   

14.
Repair kinetics after saturating doses of ultraviolet radiation (UV), N-acetoxy-2-acetylaminofluorene (AAAF), and combinations of both agents were studied in human fibroblasts proficient and deficient in excision repair, and in Chinese hamster cells (V-79) deficient in excision repair. Three techniques were used: unscheduled DNA synthesis, photolysis of DNA repaired in the presence of bromodeoxyuridine (BrdUrd), and measurements of sites sensitive to a UV-endonuclease. The repair rate appears to be approximately constant during the first few hours after treatment. Later there is a decrease with time; the magnitude of the decrease depends on the cell line. Our data show that the decrease in repair observed in repair-deficient cells treated with combinations of both agents as compared to separate treatments is due neither to the cytotoxic effects of the agents used, nor to a shutoff of the repair system by the high concentrations of AAAF employed.  相似文献   

15.
Summary The mechanism by which an sbcB mutation suppresses the deficiency in postreplication repair shown by recB recC mutants of Escherichia coli was studied. The presence of an sbcB mutation in uvrA recB recC cells increased their resistance to UV radiation. This enhanced resistance was not due to a suppression of the minor deficiency in the repair of DNA daughter-strand gaps or to an inhibition of the production of DNA double-strand breaks in UV-irradiated uvrA recB recC cells; rather, the presence of an sbcB mutation, enabled uvrA recB recC cells to carry out the repair of DNA double-strand breaks. In the uvrA recB recC sbcB background, a mutation, at recF produced a huge sensitization to UV radiation, and it rendered cells deficient in the repair of both DNA daughter-strand gaps and DNA double-strand breaks. Thus, an additional sbcB mutation in uvrA recB recC cells restored their ability to perform the repair of DNA double-strand breaks, but the further addition of a recF mutation blocked this repair capacity.  相似文献   

16.
Summary Mutants of Drosophila melanogaster which are defective in DNA synthesis have been identified among mutagen-sensitive stocks through analysis of both organ and cell cultures. A new procedure employing larval brain ganglia allows poorly fertile or sterile mutants to be analyzed for the first time. Parallel studies were performed in both tissues to establish the sensitivity of the new assay relative to that of the proven cell-culture assay. Damage was induced in the DNA of cultured cells with UV irradiation and in that of ganglial cells with the carcinogen N-acetoxy-2-acetylaminofluorene. Cultures were then pulse-labeled with 3H-thymidine, incubated in the absence of thymidine, and the newly synthesized DNA was analyzed by alkaline sucrose gradient centrifugation. The molecular weight of labeled DNA from mutant cells was compared with that from control cells to assess the effect of the mutant on DNA synthesis. Among 16 mutant stocks that were scanned in either or both tissues, seven show reductions in DNA synthesis using an undamaged template. Mutants at five different genetic loci [mus(2)205, mus(3)304, mus(3)308, mus(3)310 and mus(3)311] possess a reduced capacity to synthesize DNA on a UV-damaged template in primary cell cultures. Four of these five defects can also be detected in carcinogen-treated organ cultures. Two additional defects in postreplication repair were observed with the brainganglia assay in strains that cannot be assayed in cell culture [mus(1)108, mus(2)206].Abbreviations MMS methyl methanesulfonate - HN2 nitrogen mustard - AAF 2-acetylaminofluorene - AAAF N-acetoxy-2-acetylaminofluorene - DMSO dimethyl sulfoxide  相似文献   

17.
Analysis of the distribution of published chromosome breaks in cells with constitutional chromosome aberrations showed a nonrandom distribution of breaks among chromosomes and chromosome regions. A significant amount of breakage occurred at Giemsa-negative bands. In addition, chromosome sites associated with a number of fragile sites and cellular oncogene sites were affected nonrandomly. The data are consistent with the hypothesis that chromosome breakage occurs in somatic or germ cells as a result of recombinational errors involving actively transcribing chromatin regions or regions of unstable DNA sequence structure placed in proximity during interphase.  相似文献   

18.
Dynamic light-scattering techniques are employed to study the internal Brownian motions of a commercial calf thymus DNA, clean and contaminated ?29 DNAs, and a clean ?29 DNA with bound spermidine as a function of pH. The Rouse-Zimm model parameters of both calf thymus and contaminated ?29 DNAs differ substantially from those of clean ?29 DNA in the neutral-pH region. However, this difference is largely removed by adding 0.01M EDTA (which has no effect on clean ?29 DNA) to the calf thymus DNA sample. These findings imply the existence in that preparation of polycation contaminants, presumably basic proteins, that can substantially alter the local mechanical properties of the DNA near their binding sites. The internal motion parameters kBT/f and b of both calf thymus and contaminated ?29 DNAs are found to exhibit pronounced characteristic variations between pH 8.5 and 10.5, over which range there is essentially no detectable titration to a resolution of about 1% of the base pairs. These variations, which are not observed for clean ?29 DNA, are qualitatively similar to those previously reported for a ?29 DNA with 21 single-strand breaks per chain. This indicates the formation of titratable joints associated with bound polycation contaminants. These basic ligands presumably facilitate local denaturation by stabilizing the titration of one or more protons on base-ring nitrogens near their binding sites. Spermidine binding up to 85–87% of neutralization of the total DNA charge has only a relatively minor effect on the internal motion parameters at neutral pH in 0.01M NaCl. However on raising the pH to 10.2, the internal motion parameter kBT/f undergoes a marked decrease similar to that observed for both calf thymus and contaminated ?29 DNAs and also ?29 DNA with single-strand breaks. This indicates that spermidine, too, is capable of inducing titratable joints. Evidence is presented that the titratable joints associated with bound polycations on the calf thymus DNA may serve primarily as torsion joints, as was found previously for the titratable joints associated with single-strand breaks.  相似文献   

19.
Specific regions of genomes (fragile sites) are hot spots for the chromosome rearrangements that are associated with many types of cancer cells. Understanding the molecular mechanisms regulating the stability of chromosome fragile sites, therefore, has important implications in cancer biology. We previously identified two chromosome fragile sites in Saccharomyces cerevisiae that were induced in response to the reduced expression of Pol1p, the catalytic subunit of DNA polymerase α. In the study presented here, we show that reduced levels of Pol3p, the catalytic subunit of DNA polymerase δ, induce instability at these same sites and lead to the generation of a variety of chromosomal aberrations. These findings demonstrate that a change in the stoichiometry of replicative DNA polymerases results in recombinogenic DNA lesions, presumably double-strand DNA breaks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号